Sensitivity analysis cont. #
By increasing the right hand side of the \( c_1 \) constraint by 1 unit, we obtain a new \( \tilde{z} \) value of \( \frac{108}{7} \) .
So the shadow price is \( z - \tilde{z} = \frac{22}{7} \) .
Next, identify shadow prices from a completed simplex tableau:
Shadow prices using MATLAB #
A=[2 1; 1 4]
b=[3 4]'
C=[-7 -6]'
lb=[0 0]'
[x, u]=linprog(C,A,b,[],[],lb,[])
Optimal solution found.
x =
8/7
5/7
u =
86/7
Then we can start playing with the constraints to see shadow prices.
b1=b
b1(1)=4
[x, u1]=linprog(C,A,b1,[],[],lb,[])
Optimal solution found.
x =
12/7
4/7
u =
-108/7
b2=b
b2(2)=5
[x, u2]=linprog(C,A,b2,[],[],lb,[])
Optimal solution found.
x =
1
1
u2 =
-13
lb1=[1 0]
[x, u3]=linprog(C,A,b,[],[],lb1,[])
Optimal solution found.
x =
8/7
5/7
u3 =
-86/7