MATH102-lecture-20220210

3T solutions #

image_2022-02-10-09-33-31

Least common multiples #

Consider \( a = 2^2 \cdot 5^4 \cdot 7 \cdot 41^{10} \) and \( b = 5^2 \cdot 19 \cdot 41 \cdot 47^2 \) .

If \( M \) is a common multiple of \( a \) and \( b \) , that means that \( a | M \) and also \( b | M \) .

So what can we say about the pf of \( M \) ?

The closed form of \( M \) :

\[\begin{aligned} M &= 2^i \cdot 5^j \cdot 7^r \cdot 19^k \cdot 41^s \cdot 47^t \cdot u \end{aligned}\]

where

\[\begin{aligned} i &\geq 2 \\ j &\geq 4 \\ k &\geq 1 \\ r &\geq 1 \\ s &\geq 10 \\ t &\geq 2 \\ u &\in \mathbb{Z} \end{aligned}\]

So the shortcut is the union of primes with the higher power in each number.

Example
\( a = 2 \cdot 5^3 \cdot 19^4 \) and \( b = 2^4 \cdot 19 \cdot 41^7 \)

So our \( \text{LCM} (a, b) = 2^4 \cdot 5^3 \cdot 19^4 \cdot 41^7 \)

Example
\( a = 2 \cdot 5^3 \) and \( b = 2^2 \cdot 5^4 \cdot 11^9 \)

So our \( \text{LCM} (a,b) = 2^2 \cdot 5^4 \cdot 11^9 \)

Notice that the least common multiple is \( b \) ( \( b \) is a multiple of \( a \) ).

Example
\( a = 2^2 \cdot 3^2 \cdot 7 \) .

Find \( b \) such that \( \text{LCM} (a, b) = 2^2 \cdot 3^{15} \cdot 7 \cdot 19^3 \)

\( b = 2^2 \cdot 3^{15} \cdot 7 \cdot 19^3 \)