MATH102-lecture-20220203

Divisibility cont. #

image_2022-02-03-09-10-59 image_2022-02-03-09-11-02

Example
Find a number with the amount of divisors of \( N \) to be \( 4 \cdot 6 \cdot 3 \) . \[\begin{aligned} N = 7^3 \cdot 11^5 \cdot 41^2 \end{aligned}\]

image_2022-02-03-09-20-19

Theorem. Consider the 4 digit number \( n = \overline{abcd} \) . \( n \) is divisible by 9 if the sum of its digits \( a + b + c + d \) is divisible by 9.
Proof. \[\begin{aligned} \overline{abcd} &= 1000a + 100b + 10c + d \end{aligned}\]

\( \square \)

Note: \( \overline{abcd} \) means a 4 digit number.