CS137-lecture-20210304

Sequential circuits cont. #

Creating the S-R latch cont. #

\( S \) \( R \) \( Q_t \) \( Q_{t+1} \)
0 0 \( Q_t \) \( Q_t \)
0 1 0 0
1 0 1 1
1 1 Undefined
\( Q_{t + 1} \) is the "next output."

image_2021-03-04-19-16-32

Case 1: \( S = 0 \) , \( R = 0 \)

\[\begin{aligned} Q_{t+1} &= \overline{0 + \overline{Q_t}} = Q_t \\ \overline{Q_{t+1}} &= \overline{0 + Q_t} = \overline{Q_t} \end{aligned}\]

Case 2: \( S = 0 \) , \( R = 1 \)

\[\begin{aligned} Q_{t+1} &= \overline{1 + \overline{Q_t}} = \overline{1} = 0 \\ \overline{Q_{t+1}} &= \overline{0 + \overline{Q_t}} = \overline{Q_t} \end{aligned}\]

Case 3: \( S = 1 \) , \( R = 0 \)

\[\begin{aligned} Q_{t+1} &= \overline{0 + \overline{Q_t}} = 1 \\ \overline{Q_{t+1}} &= \overline{1 + Q_t} = 0 \end{aligned}\]

Case 4: \( S = 1 \) , \( R = 1 \)

\[\begin{aligned} Q_{t+1} &= \overline{1 + \overline{Q_t}} = \overline{1} = 0 \\ \overline{Q_{t+1}} &= \overline{1 + Q_t} = \overline{1} = 0 \end{aligned}\]

Since the output and its complement are the same, this case is wrong.