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COMBINATIONAL CIRCUITS

LARGE DESIGNS
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In this Chapter
 Design methodologies for large combinational circuits

 Bit-parallel
 Bit-serial

 Integer arithmetic as examples
 Add, subtract, multiply, and divide as four basic 

arithmetic operations

 IEEE floating-point number standards
 Floating-point  Data Space

 Floating-point arithmetic
 Floating-point unit (FPU)
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Top-Down Design Methodology

 Bit-parallel
 Partition n-bit design problem into smaller n-bit design 

problems
 E.g., 8-bit ALU designed using 8-bit adder/subtractor and 8-

bit bit-wise logic

 Bit-serial
 Partition  n-bit design problem into a fewer-bit design 

problem (called slice)
 E.g., 8-bit ALU designed using eight 1-bit ALU modules

 Hybrid
 Design uses bit-parallel and bit-serial modules
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Carry Propagate Adder
(A bit-serial adder)

 Use FA slices

 Carry bits generated sequentially, one at a time

 Propagation delay proportional to number of carry bits

 Assuming SOP expressions for sum and carry bits and 
0.1 ns delay for NANDs determine: 
 ΔCPA(8)

 ΔCPA(32) 

 CPA is the slowest

ΔCPA(8) = 1.7 ns

ΔCPA(32) = 6.5 ns, too slow
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Carry Look-Ahead (CLA) 
Adder

 Goal: Generate carry bits in parallel

 Let’s examine FA expressions
 Easy to generate p and g bits in 

parallel 

 Carry bits are dependent, but can 
substitute carry expressions to break 
dependency 

 Once carry bits are known, easy to 
generate sum bits in parallel

 ΔCLA(8) = ?

 ൌ ܽ ⊕	 ܾ

݃ ൌ ܽ	 ܾ

Let,

ݏ ൌ 	ܽ⨁ܾ⨁ܿିଵ

ܿ ൌ ሺܽ⨁ܾሻc୧ିଵ  	a୧b୧

FA expression from Ch2:

ݏ ൌ  ⊕	ܿିଵ

ܿ ൌ ݃  ܿିଵ	

.ૡ ࢙
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Observations
 If keep substituting previous carry expression in next 

carry expression will run into Fan-in and fan-out 
problems

 Solution: Generate some carry bits sequentially and 
some in parallel (next slide)
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Large CLA Adder

1. Group carry bits 
into equal sized 
sets with sets 
resulting in no fan-
in or fan-out 
problem

2. Generate carry bits 
in two steps

 What is the longest 
signal path from 
inputs to outputs?

 Determine 
ΔCLA(32)

Example: For simplicity assume n = 8

ΔCLA(32) = 1.2 ns
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Subtractor
 Similar expressions as FA:

 Can use adder to do subtraction if both are needed
 2’s complement adder/subtractor
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Twos Complement Adder/Subtractor
 A – B can be viewed as adding A with –B
 Circuits for A + B and A + (-B) are similar except second input is negated when 

subtracting
 What do we known about converting negative numbers to 2’s complement 

representation?
1. Flip bits

 Can be done with NOT gates
2. Add 1

 Addition:
 Do not flip B bits
 Set carry-in to 0
 Carry-out not part of the result

 Subtraction:
 Flip B bits
 Set carry-in to 1
 Carry-out not part of the result

 How to combine into one circuit? Use a control bit m for mode.
 Add when m = 0
 Subtract when m = 1
 Need an inverter circuit controlled by m

 Potential problem?
 Result can overflow and become incorrect
 Need overflow detection logic 
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Arithmetic Overflow
 When sum of two positive numbers is negative

 I.e., Sign of result becomes 1
 Applies to subtraction too

 A - B when A > 0 and B < 0

 When sum of two negative numbers is positive
 Sign of result becomes 0
 Applies to subtraction too

 A – B when A < 0 and B > 0

 A simple rule to detect overflow
 Overflow when carry-in to sign bit position ≠ carry-out 

from sign bit position

Digital Logic Design and Computer Organization with Computer Architecture for Security 10

Arithmetic Logic Unit (ALU)
 Performs arithmetic or bit-wise logic functions

 A function code specifies which operation to perform
 A complex combinational circuit

 Need to use bit-parallel or bit-serial design methodology
 Overflow flag (OVF) can only be active when performing 

arithmetic operations
 Must be masked otherwise

f2 f1 f0 Function
0 0 0 Add
0 0 1 Sub
0 1 0 Increment
0 1 1 Decrement
1 0 0 Bitwise AND
1 0 1 Bitwise OR
1 1 0 Bitwise NOT
1 1 1 Not Defined

aaa A 011n ...  bbb B 011n ... 

rrr R 011n ... 

Example
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ALU Bit-Parallel Design
 Identify different types of 

operations
 n-bit Arithmetic

 Add, subtract, increment, 
decrement

 Can combine into one 2’s 
complement adder/subtrcator

 n-bit Bit-wise operators
 NOT,  AND, OR

 Assume you have these modules 
draw a data path
 Use MUX to select only one 

output
 Include other necessary circuits 

 Circuit to convert input F into 
internal data path signals

 Circuit to mask OVF during bit-
wise operations

 Design modules and assemble

aaa A 011n ...  bbb B 011n ... 

rrr R 011n ... 
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Example ALU Modules
 Design Arithmetic module

 Use n-bit 2’s complement adder/subtractor
 Left input always A
 Right input either B or 1

 Need a circuit that outputs B if add/sub or 1 if inc/dec.
 Use known modules when possible

 Design n-bit 4-to-1 MUX
 Bit-parallel: Design using n-bit 2-to-1 MUXs (bit-parallel)
 Bit-serial: Design using 1-bit 4-to-1 MUX slices

 Design Map and Mask circuits
 Create truth tables
 Find minimal SOP/POS expressions
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ALU Bit-Serial Design
 Consider n copies of 1-bit 

ALU slices 
 Create truth table for 1-bit 

ALU slice

 Use Espresso

 May use larger slices
 2-bit or 4-bit, for example

 Larger slices may be 
designed bit-parallel

 Can be slow for large n

f2 f1 f0 a b ci co r Function
0 0 0 0 0 0 0 0

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

0 0 1 0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

0 1 0 0 d 1 0 1
1 d 0 0 1
1 d 1 1 0

0 1 1 0 d 1 1 1
1 d 0 0 1

1 0 0 1 1 d d 1 Bit-wised AND
1 0 1 0 1 d d 1

1 0 d d 1
1 1 d d 1

1 1 0 0 d d d 1
1 d d d 0

1 1 1 d d d d d Not Defined

Add

Sub

Increment

Decrement

Bit-wised OR

Bit-wised NOT

Truth Table for 1-bit ALU slice
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Other design examples
(unsigned multiplier)

 Bit-parallel
 Addends are added one at a time after  

adding 1st two 
 Less concurrency in the data path
 Slower, longer propagation delay

 Bit-serial 
 Addend bits are added vertically, the 

way numbers are added by hand
 More concurrency in the data path
 Faster, shorter propagation delay

Algorithm
Bit-parallel

Bit-serial
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Unsigned Divider
(restoring)

 Similar to how we divide by hand
 In each step, remainder can be + or –
 If remainder positive, use in the next step 
 Else, restore 
 Concatenate next numerator bit and repeat

 Bit-parallel
 Requires subtractor and MUX modules

 Bit-serial
 Can use 1-bit combined subtractor/MUX slices
 See Exercise section

Bit-parallel
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Real Number Arithmetic
IEEE 754 FP number Standards

 Single, 32 bits
 1-bit sign, 8-bit biased exponent (bias = 127),  23-bit fraction

 Stored as a 32-bit number in memory

 double, 64 bits 
 1-bit sign, 11-bit biased exponent (bias = 1023), 52-bit fraction

 Stored as a 64-bit number in memory

 Extended, 80 bits
 1-bit sign, 15-bit bias exponent (bias = 16383), 64-bit fraction

 Stored in 80-bit registers only (no memory representation)
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FP number Data Space 
(assume 32-bit FP numbers)

 Normal 
1 ≤ Biased exponent ≤ 254

 Denormal
 Biased exponent = 0 and  fraction ≠ 0

 Zero 
 Biased exponent = 0 and fraction = 0

 Infinity
 Biased exponent = 255 and fraction = 0

 E.g., 



 Not-a-number (Nan)

 Biased exponent = 255 and fraction ≠ 0
 E.g., െ
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Data Space Illustration
(1-Dimensional) 

 Bold and thin lines indicate real numbers stored as FP 
numbers in computer

 More fraction bits implies more thin lines

 More exponent bits implies more bold lines
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Two-Dimensional Illustration
 Easier to identify data space regions
 Easier to mark specific FP numbers or domain or range of 

a function
 Eg. The largest FP number
 E.g., for test generation purposes

 region identified by (-1, 1) or [-1, 1], for example
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FP Arithmetic
 Requires integer arithmetic 

 Operates on exponent and fraction numbers independently
 Typically combinational arithmetic circuits

 Requires shift operations
 Typically combinational shifter circuits
 Used to line up implicit decimal points

 E.g., during FP add

 Used for normalizing results
 Result converted to standard format

 Used for rounding results
 64-bit fraction in register is converted to 23 or 52 bits format for storage

 “float” data type: 23-bit fraction
 “double” data type: 52-bit fraction

 The resultant fraction is rounded
 Based on the value of the bits lost
 May require another normalization step 
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FP Add
(e.g., S = A + B)

1. Switch operands (if necessary)
 For S = A + B, |A| must be ≥ |B|

2. Align decimal points and compute  result   R.F = A.F
+ B.F

3. Normalize R.F

4. Round R.F to produce S.F

 Example
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FP subtract, multiply, divide
 Subtraction 

 Lineup decimal points
 Compute A - B if A.s = B.s or A + B if A.s ≠ B.s.

 Multiplication
 Integer multiply fractions
 Add exponents 
 XOR the sign bits

 Division
 Integer divide fractions
 Subtract exponents
 XOR the sign bits 

 The rounding and normalization steps are the same as in FP add
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