
2/22/2015

1

COMBINATIONAL CIRCUITS

LARGE DESIGNS

Digital Logic Design and Computer Organization with Computer Architecture for Security 1

In this Chapter
 Design methodologies for large combinational circuits

 Bit-parallel
 Bit-serial

 Integer arithmetic as examples
 Add, subtract, multiply, and divide as four basic

arithmetic operations

 IEEE floating-point number standards
 Floating-point Data Space

 Floating-point arithmetic
 Floating-point unit (FPU)

Digital Logic Design and Computer Organization with Computer Architecture for Security 2

Top-Down Design Methodology

 Bit-parallel
 Partition n-bit design problem into smaller n-bit design

problems
 E.g., 8-bit ALU designed using 8-bit adder/subtractor and 8-

bit bit-wise logic

 Bit-serial
 Partition n-bit design problem into a fewer-bit design

problem (called slice)
 E.g., 8-bit ALU designed using eight 1-bit ALU modules

 Hybrid
 Design uses bit-parallel and bit-serial modules

Digital Logic Design and Computer Organization with Computer Architecture for Security 3

Carry Propagate Adder
(A bit-serial adder)

 Use FA slices

 Carry bits generated sequentially, one at a time

 Propagation delay proportional to number of carry bits

 Assuming SOP expressions for sum and carry bits and
0.1 ns delay for NANDs determine:
 ΔCPA(8)

 ΔCPA(32)

 CPA is the slowest

ΔCPA(8) = 1.7 ns

ΔCPA(32) = 6.5 ns, too slow
Digital Logic Design and Computer Organization with Computer Architecture for Security 4

Carry Look-Ahead (CLA)
Adder

 Goal: Generate carry bits in parallel

 Let’s examine FA expressions
 Easy to generate p and g bits in

parallel

 Carry bits are dependent, but can
substitute carry expressions to break
dependency

 Once carry bits are known, easy to
generate sum bits in parallel

 ΔCLA(8) = ?

 ൌ ܽ ⊕	 ܾ

݃ ൌ ܽ	 ܾ

Let,

ݏ ൌ 	ܽ⨁ܾ⨁ܿିଵ

ܿ ൌ ሺܽ⨁ܾሻc୧ିଵ 	a୧b୧

FA expression from Ch2:

ݏ ൌ ⊕	ܿିଵ

ܿ ൌ ݃ ܿିଵ	

.ૡ ࢙
Digital Logic Design and Computer Organization with Computer Architecture for Security 5

Observations
 If keep substituting previous carry expression in next

carry expression will run into Fan-in and fan-out
problems

 Solution: Generate some carry bits sequentially and
some in parallel (next slide)

Digital Logic Design and Computer Organization with Computer Architecture for Security 6

2/22/2015

2

Large CLA Adder

1. Group carry bits
into equal sized
sets with sets
resulting in no fan-
in or fan-out
problem

2. Generate carry bits
in two steps

 What is the longest
signal path from
inputs to outputs?

 Determine
ΔCLA(32)

Example: For simplicity assume n = 8

ΔCLA(32) = 1.2 ns

Digital Logic Design and Computer Organization with Computer Architecture for Security 7

Subtractor
 Similar expressions as FA:

 Can use adder to do subtraction if both are needed
 2’s complement adder/subtractor

Digital Logic Design and Computer Organization with Computer Architecture for Security 8

Twos Complement Adder/Subtractor
 A – B can be viewed as adding A with –B
 Circuits for A + B and A + (-B) are similar except second input is negated when

subtracting
 What do we known about converting negative numbers to 2’s complement

representation?
1. Flip bits

 Can be done with NOT gates
2. Add 1

 Addition:
 Do not flip B bits
 Set carry-in to 0
 Carry-out not part of the result

 Subtraction:
 Flip B bits
 Set carry-in to 1
 Carry-out not part of the result

 How to combine into one circuit? Use a control bit m for mode.
 Add when m = 0
 Subtract when m = 1
 Need an inverter circuit controlled by m

 Potential problem?
 Result can overflow and become incorrect
 Need overflow detection logic

Digital Logic Design and Computer Organization with Computer Architecture for Security 9

Arithmetic Overflow
 When sum of two positive numbers is negative

 I.e., Sign of result becomes 1
 Applies to subtraction too

 A - B when A > 0 and B < 0

 When sum of two negative numbers is positive
 Sign of result becomes 0
 Applies to subtraction too

 A – B when A < 0 and B > 0

 A simple rule to detect overflow
 Overflow when carry-in to sign bit position ≠ carry-out

from sign bit position

Digital Logic Design and Computer Organization with Computer Architecture for Security 10

Arithmetic Logic Unit (ALU)
 Performs arithmetic or bit-wise logic functions

 A function code specifies which operation to perform
 A complex combinational circuit

 Need to use bit-parallel or bit-serial design methodology
 Overflow flag (OVF) can only be active when performing

arithmetic operations
 Must be masked otherwise

f2 f1 f0 Function
0 0 0 Add
0 0 1 Sub
0 1 0 Increment
0 1 1 Decrement
1 0 0 Bitwise AND
1 0 1 Bitwise OR
1 1 0 Bitwise NOT
1 1 1 Not Defined

aaa A 011n ... bbb B 011n ...

rrr R 011n ...

Example

Digital Logic Design and Computer Organization with Computer Architecture for Security 11

ALU Bit-Parallel Design
 Identify different types of

operations
 n-bit Arithmetic

 Add, subtract, increment,
decrement

 Can combine into one 2’s
complement adder/subtrcator

 n-bit Bit-wise operators
 NOT, AND, OR

 Assume you have these modules
draw a data path
 Use MUX to select only one

output
 Include other necessary circuits

 Circuit to convert input F into
internal data path signals

 Circuit to mask OVF during bit-
wise operations

 Design modules and assemble

aaa A 011n ... bbb B 011n ...

rrr R 011n ...

Digital Logic Design and Computer Organization with Computer Architecture for Security 12

2/22/2015

3

Example ALU Modules
 Design Arithmetic module

 Use n-bit 2’s complement adder/subtractor
 Left input always A
 Right input either B or 1

 Need a circuit that outputs B if add/sub or 1 if inc/dec.
 Use known modules when possible

 Design n-bit 4-to-1 MUX
 Bit-parallel: Design using n-bit 2-to-1 MUXs (bit-parallel)
 Bit-serial: Design using 1-bit 4-to-1 MUX slices

 Design Map and Mask circuits
 Create truth tables
 Find minimal SOP/POS expressions

Digital Logic Design and Computer Organization with Computer Architecture for Security 13

ALU Bit-Serial Design
 Consider n copies of 1-bit

ALU slices
 Create truth table for 1-bit

ALU slice

 Use Espresso

 May use larger slices
 2-bit or 4-bit, for example

 Larger slices may be
designed bit-parallel

 Can be slow for large n

f2 f1 f0 a b ci co r Function
0 0 0 0 0 0 0 0

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

0 0 1 0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

0 1 0 0 d 1 0 1
1 d 0 0 1
1 d 1 1 0

0 1 1 0 d 1 1 1
1 d 0 0 1

1 0 0 1 1 d d 1 Bit-wised AND
1 0 1 0 1 d d 1

1 0 d d 1
1 1 d d 1

1 1 0 0 d d d 1
1 d d d 0

1 1 1 d d d d d Not Defined

Add

Sub

Increment

Decrement

Bit-wised OR

Bit-wised NOT

Truth Table for 1-bit ALU slice
Digital Logic Design and Computer Organization with Computer Architecture for Security 14

Other design examples
(unsigned multiplier)

 Bit-parallel
 Addends are added one at a time after

adding 1st two
 Less concurrency in the data path
 Slower, longer propagation delay

 Bit-serial
 Addend bits are added vertically, the

way numbers are added by hand
 More concurrency in the data path
 Faster, shorter propagation delay

Algorithm
Bit-parallel

Bit-serial

Digital Logic Design and Computer Organization with Computer Architecture for Security 15

Unsigned Divider
(restoring)

 Similar to how we divide by hand
 In each step, remainder can be + or –
 If remainder positive, use in the next step
 Else, restore
 Concatenate next numerator bit and repeat

 Bit-parallel
 Requires subtractor and MUX modules

 Bit-serial
 Can use 1-bit combined subtractor/MUX slices
 See Exercise section

Bit-parallel

Digital Logic Design and Computer Organization with Computer Architecture for Security 16

Real Number Arithmetic
IEEE 754 FP number Standards

 Single, 32 bits
 1-bit sign, 8-bit biased exponent (bias = 127), 23-bit fraction

 Stored as a 32-bit number in memory

 double, 64 bits
 1-bit sign, 11-bit biased exponent (bias = 1023), 52-bit fraction

 Stored as a 64-bit number in memory

 Extended, 80 bits
 1-bit sign, 15-bit bias exponent (bias = 16383), 64-bit fraction

 Stored in 80-bit registers only (no memory representation)

Digital Logic Design and Computer Organization with Computer Architecture for Security 17

FP number Data Space
(assume 32-bit FP numbers)

 Normal
1 ≤ Biased exponent ≤ 254

 Denormal
 Biased exponent = 0 and fraction ≠ 0

 Zero
 Biased exponent = 0 and fraction = 0

 Infinity
 Biased exponent = 255 and fraction = 0

 E.g.,

 Not-a-number (Nan)

 Biased exponent = 255 and fraction ≠ 0
 E.g., െ

Digital Logic Design and Computer Organization with Computer Architecture for Security 18

2/22/2015

4

Data Space Illustration
(1-Dimensional)

 Bold and thin lines indicate real numbers stored as FP
numbers in computer

 More fraction bits implies more thin lines

 More exponent bits implies more bold lines

2 mine
2

1
min

e 2
2

min
e 2

3
min

e

Digital Logic Design and Computer Organization with Computer Architecture for Security 19

Two-Dimensional Illustration
 Easier to identify data space regions
 Easier to mark specific FP numbers or domain or range of

a function
 Eg. The largest FP number
 E.g., for test generation purposes

 region identified by (-1, 1) or [-1, 1], for example

Digital Logic Design and Computer Organization with Computer Architecture for Security 20

FP Arithmetic
 Requires integer arithmetic

 Operates on exponent and fraction numbers independently
 Typically combinational arithmetic circuits

 Requires shift operations
 Typically combinational shifter circuits
 Used to line up implicit decimal points

 E.g., during FP add

 Used for normalizing results
 Result converted to standard format

 Used for rounding results
 64-bit fraction in register is converted to 23 or 52 bits format for storage

 “float” data type: 23-bit fraction
 “double” data type: 52-bit fraction

 The resultant fraction is rounded
 Based on the value of the bits lost
 May require another normalization step

Digital Logic Design and Computer Organization with Computer Architecture for Security 21

FP Add
(e.g., S = A + B)

1. Switch operands (if necessary)
 For S = A + B, |A| must be ≥ |B|

2. Align decimal points and compute result R.F = A.F
+ B.F

3. Normalize R.F

4. Round R.F to produce S.F

 Example

Digital Logic Design and Computer Organization with Computer Architecture for Security 22

FP subtract, multiply, divide
 Subtraction

 Lineup decimal points
 Compute A - B if A.s = B.s or A + B if A.s ≠ B.s.

 Multiplication
 Integer multiply fractions
 Add exponents
 XOR the sign bits

 Division
 Integer divide fractions
 Subtract exponents
 XOR the sign bits

 The rounding and normalization steps are the same as in FP add

Digital Logic Design and Computer Organization with Computer Architecture for Security 23

