
2/22/2015

1

COMBINATIONAL CIRCUITS

LARGE DESIGNS

Digital Logic Design and Computer Organization with Computer Architecture for Security 1

In this Chapter
 Design methodologies for large combinational circuits

 Bit-parallel
 Bit-serial

 Integer arithmetic as examples
 Add, subtract, multiply, and divide as four basic

arithmetic operations

 IEEE floating-point number standards
 Floating-point Data Space

 Floating-point arithmetic
 Floating-point unit (FPU)

Digital Logic Design and Computer Organization with Computer Architecture for Security 2

Top-Down Design Methodology

 Bit-parallel
 Partition n-bit design problem into smaller n-bit design

problems
 E.g., 8-bit ALU designed using 8-bit adder/subtractor and 8-

bit bit-wise logic

 Bit-serial
 Partition n-bit design problem into a fewer-bit design

problem (called slice)
 E.g., 8-bit ALU designed using eight 1-bit ALU modules

 Hybrid
 Design uses bit-parallel and bit-serial modules

Digital Logic Design and Computer Organization with Computer Architecture for Security 3

Carry Propagate Adder
(A bit-serial adder)

 Use FA slices

 Carry bits generated sequentially, one at a time

 Propagation delay proportional to number of carry bits

 Assuming SOP expressions for sum and carry bits and
0.1 ns delay for NANDs determine:
 ΔCPA(8)

 ΔCPA(32)

 CPA is the slowest

ΔCPA(8) = 1.7 ns

ΔCPA(32) = 6.5 ns, too slow
Digital Logic Design and Computer Organization with Computer Architecture for Security 4

Carry Look-Ahead (CLA)
Adder

 Goal: Generate carry bits in parallel

 Let’s examine FA expressions
 Easy to generate p and g bits in

parallel

 Carry bits are dependent, but can
substitute carry expressions to break
dependency

 Once carry bits are known, easy to
generate sum bits in parallel

 ΔCLA(8) = ?

௜݌ ൌ ܽ௜ ⊕	 ௜ܾ

௜݃ ൌ ܽ௜	 ௜ܾ

Let,

௜ݏ ൌ 	ܽ௜⨁ܾ௜⨁ܿ௜ିଵ

ܿ௜ ൌ ሺܽ௜⨁ܾ௜ሻc୧ିଵ ൅ 	a୧b୧

FA expression from Ch2:

௜ݏ ൌ ௜݌ ⊕	ܿ௜ିଵ

ܿ௜ ൌ ݃௜ ൅ ௜ܿ௜ିଵ݌	

૙.ૡ ࢙࢔
Digital Logic Design and Computer Organization with Computer Architecture for Security 5

Observations
 If keep substituting previous carry expression in next

carry expression will run into Fan-in and fan-out
problems

 Solution: Generate some carry bits sequentially and
some in parallel (next slide)

Digital Logic Design and Computer Organization with Computer Architecture for Security 6

2/22/2015

2

Large CLA Adder

1. Group carry bits
into equal sized
sets with sets
resulting in no fan-
in or fan-out
problem

2. Generate carry bits
in two steps

 What is the longest
signal path from
inputs to outputs?

 Determine
ΔCLA(32)

Example: For simplicity assume n = 8

ΔCLA(32) = 1.2 ns

Digital Logic Design and Computer Organization with Computer Architecture for Security 7

Subtractor
 Similar expressions as FA:

 Can use adder to do subtraction if both are needed
 2’s complement adder/subtractor

Digital Logic Design and Computer Organization with Computer Architecture for Security 8

Twos Complement Adder/Subtractor
 A – B can be viewed as adding A with –B
 Circuits for A + B and A + (-B) are similar except second input is negated when

subtracting
 What do we known about converting negative numbers to 2’s complement

representation?
1. Flip bits

 Can be done with NOT gates
2. Add 1

 Addition:
 Do not flip B bits
 Set carry-in to 0
 Carry-out not part of the result

 Subtraction:
 Flip B bits
 Set carry-in to 1
 Carry-out not part of the result

 How to combine into one circuit? Use a control bit m for mode.
 Add when m = 0
 Subtract when m = 1
 Need an inverter circuit controlled by m

 Potential problem?
 Result can overflow and become incorrect
 Need overflow detection logic

Digital Logic Design and Computer Organization with Computer Architecture for Security 9

Arithmetic Overflow
 When sum of two positive numbers is negative

 I.e., Sign of result becomes 1
 Applies to subtraction too

 A - B when A > 0 and B < 0

 When sum of two negative numbers is positive
 Sign of result becomes 0
 Applies to subtraction too

 A – B when A < 0 and B > 0

 A simple rule to detect overflow
 Overflow when carry-in to sign bit position ≠ carry-out

from sign bit position

Digital Logic Design and Computer Organization with Computer Architecture for Security 10

Arithmetic Logic Unit (ALU)
 Performs arithmetic or bit-wise logic functions

 A function code specifies which operation to perform
 A complex combinational circuit

 Need to use bit-parallel or bit-serial design methodology
 Overflow flag (OVF) can only be active when performing

arithmetic operations
 Must be masked otherwise

f2 f1 f0 Function
0 0 0 Add
0 0 1 Sub
0 1 0 Increment
0 1 1 Decrement
1 0 0 Bitwise AND
1 0 1 Bitwise OR
1 1 0 Bitwise NOT
1 1 1 Not Defined

aaa A 011n ...  bbb B 011n ... 

rrr R 011n ... 

Example

Digital Logic Design and Computer Organization with Computer Architecture for Security 11

ALU Bit-Parallel Design
 Identify different types of

operations
 n-bit Arithmetic

 Add, subtract, increment,
decrement

 Can combine into one 2’s
complement adder/subtrcator

 n-bit Bit-wise operators
 NOT, AND, OR

 Assume you have these modules
draw a data path
 Use MUX to select only one

output
 Include other necessary circuits

 Circuit to convert input F into
internal data path signals

 Circuit to mask OVF during bit-
wise operations

 Design modules and assemble

aaa A 011n ...  bbb B 011n ... 

rrr R 011n ... 

Digital Logic Design and Computer Organization with Computer Architecture for Security 12

2/22/2015

3

Example ALU Modules
 Design Arithmetic module

 Use n-bit 2’s complement adder/subtractor
 Left input always A
 Right input either B or 1

 Need a circuit that outputs B if add/sub or 1 if inc/dec.
 Use known modules when possible

 Design n-bit 4-to-1 MUX
 Bit-parallel: Design using n-bit 2-to-1 MUXs (bit-parallel)
 Bit-serial: Design using 1-bit 4-to-1 MUX slices

 Design Map and Mask circuits
 Create truth tables
 Find minimal SOP/POS expressions

Digital Logic Design and Computer Organization with Computer Architecture for Security 13

ALU Bit-Serial Design
 Consider n copies of 1-bit

ALU slices
 Create truth table for 1-bit

ALU slice

 Use Espresso

 May use larger slices
 2-bit or 4-bit, for example

 Larger slices may be
designed bit-parallel

 Can be slow for large n

f2 f1 f0 a b ci co r Function
0 0 0 0 0 0 0 0

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

0 0 1 0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

0 1 0 0 d 1 0 1
1 d 0 0 1
1 d 1 1 0

0 1 1 0 d 1 1 1
1 d 0 0 1

1 0 0 1 1 d d 1 Bit-wised AND
1 0 1 0 1 d d 1

1 0 d d 1
1 1 d d 1

1 1 0 0 d d d 1
1 d d d 0

1 1 1 d d d d d Not Defined

Add

Sub

Increment

Decrement

Bit-wised OR

Bit-wised NOT

Truth Table for 1-bit ALU slice
Digital Logic Design and Computer Organization with Computer Architecture for Security 14

Other design examples
(unsigned multiplier)

 Bit-parallel
 Addends are added one at a time after

adding 1st two
 Less concurrency in the data path
 Slower, longer propagation delay

 Bit-serial
 Addend bits are added vertically, the

way numbers are added by hand
 More concurrency in the data path
 Faster, shorter propagation delay

Algorithm
Bit-parallel

Bit-serial

Digital Logic Design and Computer Organization with Computer Architecture for Security 15

Unsigned Divider
(restoring)

 Similar to how we divide by hand
 In each step, remainder can be + or –
 If remainder positive, use in the next step
 Else, restore
 Concatenate next numerator bit and repeat

 Bit-parallel
 Requires subtractor and MUX modules

 Bit-serial
 Can use 1-bit combined subtractor/MUX slices
 See Exercise section

Bit-parallel

Digital Logic Design and Computer Organization with Computer Architecture for Security 16

Real Number Arithmetic
IEEE 754 FP number Standards

 Single, 32 bits
 1-bit sign, 8-bit biased exponent (bias = 127), 23-bit fraction

 Stored as a 32-bit number in memory

 double, 64 bits
 1-bit sign, 11-bit biased exponent (bias = 1023), 52-bit fraction

 Stored as a 64-bit number in memory

 Extended, 80 bits
 1-bit sign, 15-bit bias exponent (bias = 16383), 64-bit fraction

 Stored in 80-bit registers only (no memory representation)

Digital Logic Design and Computer Organization with Computer Architecture for Security 17

FP number Data Space
(assume 32-bit FP numbers)

 Normal
1 ≤ Biased exponent ≤ 254

 Denormal
 Biased exponent = 0 and fraction ≠ 0

 Zero
 Biased exponent = 0 and fraction = 0

 Infinity
 Biased exponent = 255 and fraction = 0

 E.g.,
૚

૙
 Not-a-number (Nan)

 Biased exponent = 255 and fraction ≠ 0
 E.g., െ૚

Digital Logic Design and Computer Organization with Computer Architecture for Security 18

2/22/2015

4

Data Space Illustration
(1-Dimensional)

 Bold and thin lines indicate real numbers stored as FP
numbers in computer

 More fraction bits implies more thin lines

 More exponent bits implies more bold lines

2 mine
2

1
min

e 2
2

min
e 2

3
min

e

Digital Logic Design and Computer Organization with Computer Architecture for Security 19

Two-Dimensional Illustration
 Easier to identify data space regions
 Easier to mark specific FP numbers or domain or range of

a function
 Eg. The largest FP number
 E.g., for test generation purposes

 region identified by (-1, 1) or [-1, 1], for example

Digital Logic Design and Computer Organization with Computer Architecture for Security 20

FP Arithmetic
 Requires integer arithmetic

 Operates on exponent and fraction numbers independently
 Typically combinational arithmetic circuits

 Requires shift operations
 Typically combinational shifter circuits
 Used to line up implicit decimal points

 E.g., during FP add

 Used for normalizing results
 Result converted to standard format

 Used for rounding results
 64-bit fraction in register is converted to 23 or 52 bits format for storage

 “float” data type: 23-bit fraction
 “double” data type: 52-bit fraction

 The resultant fraction is rounded
 Based on the value of the bits lost
 May require another normalization step

Digital Logic Design and Computer Organization with Computer Architecture for Security 21

FP Add
(e.g., S = A + B)

1. Switch operands (if necessary)
 For S = A + B, |A| must be ≥ |B|

2. Align decimal points and compute result R.F = A.F
+ B.F

3. Normalize R.F

4. Round R.F to produce S.F

 Example

Digital Logic Design and Computer Organization with Computer Architecture for Security 22

FP subtract, multiply, divide
 Subtraction

 Lineup decimal points
 Compute A - B if A.s = B.s or A + B if A.s ≠ B.s.

 Multiplication
 Integer multiply fractions
 Add exponents
 XOR the sign bits

 Division
 Integer divide fractions
 Subtract exponents
 XOR the sign bits

 The rounding and normalization steps are the same as in FP add

Digital Logic Design and Computer Organization with Computer Architecture for Security 23

