2/22/2015

e
In this Chapter
* Design methodologies for large combinational circuits
e Bit-parallel
e Bit-serial
c h apte r 3 ¢ Integer arithmetic as examples

¢ Add, subtract, multiply, and divide as four basic

COMBINATIONAL CIRCUITS IE;’};“:}“‘*:‘_“ °pe”,‘ﬁ:“s W—
LARGE DES'GNS oating-point numbper standards

¢ Floating-point Data Space
Floating-point arithmetic
Floating-point unit (FPU)

Digital Logic esign and Computer Organization with Comuter Arcitectur for Security il

Digial Logic Design and Computr Organizaton with Computer Arcitecture for Security 2

"~ Carry Propagate Adder

(A bit-serial adder)

--/fé’p-Dav;\—mﬁﬁti dology

* Bit-parallel ® Use FA slices
0 gfgglté%‘sn'bit design problem into smaller n-bit design o Carry bits generated sequentially, one at a time
« E.g., 8-bit ALU designed using 8-bit adder/subtractor and 8- * Propagation delay proportional to number of carry bits
bit bit-wise logic * Assuming SOP expressions for sum and carry bits and
* Bit-serial 0.1 ns delay for NANDs determine:
e Partition n-bit design problem into a fewer-bit design * ACPA(8)

problem (called slice)
e E.g., 8-bit ALU designed using eight 1-bit ALU modules
* Hybrid
« Design uses bit-parallel and bit-serial modules IO
ACPA(32) = 6.5 ns, t

3 Digal Logi Design nd Computer Org

* ACPA(32)
* CPA is the slowest

Digital Logic Design and Computer

ih Computer Archiectur

-Carry L

Adder

Observations

* Goal: Generate carry bits in paralle] ~ FAexpression from Ch2: © If keep substituting previous carry expression in next

S; = a;®b;®c;i—q

* Let’s examine FA expressions carry expression will run into Fan-in and fan-out

» Easy to generate p and g bits in € = (@®b)eiy + aiby problems
parallel * Solution: Generate some carry bits sequentially and
e Carry bits are dependent, but can L) some in parallel (next slide)
substitute carry expressions to break Z = Zif 4
dependency
e Once carry bits are known, easy to
generate sum bits in parallel si=pi® cia
e ACLA(8)=? € =git Pici-1
08ns
Digital Logic Design and Computer Organization with Computer Architecture for Security 5

Digial Logic Design and Computer Organizaton with Computer Arcitecture for Security 6

“Large

1. Group carry bits
into equal sized
sets with sets i i
resulting in no fan- ‘
in or fan-out i
problem 2

2. Generate carry bits]
in two steps

Example: For simplicity assume n =8

rowre |

0 5250, 20

ooy 5| ccou
2 s

signal path from = - @
inputs to outputs? \ | ¥ —

e Determine ¥ ¥
ACLA(32)

* What is the longest) }J

ACLA(32)=1.2ns

Digital Logic Design and Computer Organization with Computer Archtecture fo Security

:77-_7_72-'—_**_,
~~Twos Complement Adder/Subtractor

* A-B can be viewed as adding A with -B
Circuits for A + B and A + (-B) are similar except second input is negated when
subtracting
‘What do we known about converting negative numbers to 2’s complement
representation?
1. Flip bits
+ Can be done with NOT gates
2. Add1
Addition:
« Do not flip B bits
o Set carry-in to 0
« Carry-out not part of the result
Subtraction:
« Flip B bits
o Set carry-in to 1
* Carry-out not part of the result
How to combine into one circuit? Use a control bit m for mode.
+ Add whenm =0
+ Subtract whenm =1
+ Need an inverter circuit controlled by m
Potential problem?
* Result can overflow and become incorrect
* Need overflow detection logic

Digital Logic Design and Computer Organization with Computer Architecture for Securlty

2/22/2015

Subtractor

* Similar expressions as FA:
di=x; Dy ® b,
by = (x; @ yi)bi_s + Ty

* Can use adder to do subtraction if both are needed
¢ 2’s complement adder/subtractor

L L

. yi .. 1
di A . 0
Digital Logic Design and Computer Organization with Computer Architecture for Security 8

¢ Performs arithmetic or bit-wise logic functions
¢ A function code specifies which operation to perform
¢ A complex combinational circuit
* Need to use bit-parallel or bit-serial design methodology

¢ Overflow flag (OVF) can only be active when performing
arithmetic operations
* Must be masked otherwise

Example

=

f0_|Function
Add

Sub
Increment
Decrement
Bitwise AND
Bitwise OR
Bitwise NOT
Not Defined

A=an1-a1a0 B=bn1-bibo

F=fafifo

FrrRrRRrROOOOIR

PR OORROO
PORrORORO

ovf R
= Fp_1-T1l;
Oighal Logc Desgn and Computts Organzfla b Comlter Avchitecture for Security

Arithmetic Overflow

* When sum of two positive numbers is negative
¢ Le., Sign of result becomes 1
¢ Applies to subtraction too
« A-BwhenA>0and B<0
° When sum of two negative numbers is positive
o Sign of result becomes 0
¢ Applies to subtraction too
« A—-BwhenA<0and B>0
* A simple rule to detect overflow

¢ Overflow when carry-in to sign bit position # carry-out
from sign bit position

Digal Logic Desig ar Computer Organizaton with Computer Architecure o Secuty 10

ALU Bit-Parallel Design

© Identify different types of
operations
* n-bit Arithmetic
= Add, subtract, increment,
decrement
« Can combine into one 2’s
complement adder/subtreator
* n-bit Bit-wise operators
+ NOT, AND, OR

Avaimas Bebyybiby

BwisedNOT BlWedOR

[oo

¢ Assume you have these modul
draw a data path z oty
* Use MUX to select only one

output " wpenos |

Include other necessary circuits

« Circuit to convert input F into
internal data path signals

« Circuit to mask OVF during bit- o LN
wise operations

© Design modules and assemble

Digial Logic Design and Computer Organizaton with Computer Arcitecture for Security 12

Example ALU Modules

¢ Design Arithmetic module
¢ Use n-bit 2’s complement adder/subtractor
¢ Left input always A
¢ Right input either B or 1
« Need a circuit that outputs B if add/sub or 1 if inc/dec.
« Use known modules when possible

¢ Design n-bit 4-to-1 MUX
e Bit-parallel: Design using n-bit 2-to-1 MUXs (bit-parallel)
e Bit-serial: Design using 1-bit 4-to-1 MUX slices
* Design Map and Mask circuits
e Create truth tables
¢ Find minimal SOP/POS expr

Digital Logic Design and Computer Organization with Computer Archtecture fo Security 13

Algorithm

1001 A
* 1011 B
70071
1001

0000

T 110007171 P=B-A

« Bit-parallel
* Addends are added one at a time after
adding 1% two
« Less concurrency in the data path
« Slower, longer propagation delay
* Bit-serial
* Addend bits are added vertically, the
way numbers are added by hand
* More concurrency in the data path
* Faster, shorter propagation delay

Digtal Logic Design and Computer Orgarization with Computer Arciacurs fo Securit e & . " . o 15

* Consider n copies of 1-bit

2/22/2015

ALU Bit-SeriaIHefsign

7o b e[eo v [rumeton
ALU slices S I
o 1 o 0 1
* Create truth table for 1-bit oo oo i A
ALU slice Pl
1 1 1 1 1
o 0 1 0 0 0 0 o
¢ Use Espresso 0o o 1|1 1
o 1 o1 1
o 1 1|1 o
° g Sub
May use larger slices 188 MO OB MM
- = 11 0o o
e 2-bit or 4-bit, for example CANE T O I S
L S B B
. 1 d o 0 1 Increment.
e Larger slices may be B B 1 B
. . Decrement
designed bit-parallel S T B P
1 0 1 0 1 d d 1
* Can be slow for large n RS TS
e
1 1 d d d d d__[Not Defined’
Truth Table for 1-bit ALU slice
Digital Logic Design and Computer Organization with Computer Architecture for Security 14

~Real Number Arithmetic

IEEE 754 FP number Standards

¢ Single, 32 bits
e 1-bit sign, 8-bit biased exponent (bias = 127), 23-bit fraction
e Stored as a 32-bit number in memory

¢ double, 64 bits
e 1-bit sign, 11-bit biased exponent (bias = 1023), 52-bit fraction
e Stored as a 64-bit number in memory

¢ Extended, 80 bits
 1-bit sign, 15-bit bias exponent (bias = 16383), 64-bit fraction
¢ Stored in 80-bit registers only (no memory representation)

Digital Logic Design and Computer Organization with Computer Archtecture fo Securty 17

Digtal Logic Design 8®mpter dgailion vith @iker ArcrtectuRt TRGFARP!

Similar to how we divide by hand

« In each step, remainder can be + or — Bit-parallel

« If remainder positive, use in the next step

* Else, restore

+ Concatenate next numerator bit and repeat
arallel

* Requires subtractor and MUX modules
Bit-serial

+ Can use 1-bit combined subtractor/MUX slices

* See Exercise section

0101 Q=gdeqio0

D 0010 N, A3=0001
- 00 D>A3
q3=0 « bo=1 R3=1111
00010 A2=0010
- 0010 D=Az
@=1 « bo=0 0000 R2 =0000
00001 A1=0001
-0010 BES]
Q1=0 « bo=1 IREK] R1=1111
00011 A0=0011
-0010 D<AD

““"FP number Data Space
(assume 32-bit FP numbers)

Normal
1 < Biased exponent < 254
Denormal
¢ Biased exponent =0 and fraction # 0
Zero
¢ Biased exponent =0 and fraction = 0
Infinity
* Biased exponent = 255 and fraction = 0
. E.g.,%
Not-a-number (Nan)
* Biased exponent = 255 and fraction # 0

e Eg,Vv-1

Digial Logic Design and Computer Organizaton with Computer Arcitecture for Security 18

"~ Data Space lllustration
(1-Dimensional)

* Bold and thin lines indicate real numbers stored as FP
numbers in computer

® More fraction bits implies more thin lines

* More exponent bits implies more bold lines

I s e e e e

zemh 25@*‘ zem‘z Ze,.,,“
-------- Denormal Axis
~ Normal Axis
Digital Logic Desgn and Computer Organizaton with Computer Archiecture for Securty 19

P Arithmetic

* Requires integer arithmetic
* Operates on exponent and fraction numbers independently
* Typically combinational arithmetic circuits
* Requires shift operations
¢ Typically combinational shifter circuits
* Used to line up implicit decimal points
« E.g., during FP add
¢ Used for normalizing results
« Result converted to standard format
¢ Used for rounding results
= 64-bit fraction in register is converted to 23 or 52 bits format for storage
- “float” data type: 23-bit fraction
- “double” data type: 52-bit fraction
« The resultant fraction is rounded
- Based on the value of the bits lost
- May require another normalization step

Dighal Logc Design and Computer Orgaizaton with Computer Aciecure for Seurly 2

FP subtract, multiply, divide

¢ Subtraction

¢ Lineup decimal points

e Compute A-BifAs=B.sorA+BifA.s#B.s.
* Multiplication

* Integer multiply fractions
* Add exponents
* XOR the sign bits
* Division
* Integer divide fractions
¢ Subtract exponents
* XOR the sign bits
¢ The rounding and normalization steps are the same as in FP add

Digital Logic Design and Computer Organization with Computer Archtecture fo Securty 23

e, e

~ Two-Dimensional Illustration
¢ Easier to identify data space regions
¢ Easier to mark specific FP numbers or domain or range of
a function
* Eg. The largest FP number
¢ E.g., for test generation purposes
« region identified by (-1, 1) or [-1, 1], for example

= Sign 0: Positve Sign 1: Negatve
E A
I a o |a .
n n
b
£ 00........000001
3 000000 um m|
i 01 254 255 01 254 255
X-ais: 6-bi Biased Exponent (E)
z Zero. a:NaN
: Denomals i Infinity
n: Normals
Digtal Logic Design nd Compier O Fier Archeere for Soury 20

2/22/2015

FPAdd
(e.g., S=A+B)
1. Switch operands (if necessary)

¢ For S=A + B, |A| must be > |B|

2. Align decimal points and compute result R.F=A.F
+B.F

3. Normalize R.F
4. Round R.F to produce S.F
¢ Example

DigialLogic Dsignand Computer Orgniztion ith Computer Arhtctre forSecury 2

