
CSC 152 Permutation Functions January 23, 2018

Much of cryptography is accomplished by applying invertible functions to data. This may come as no surprise.
When a message is encrypted y = E(x) we expect to be able to recover the original message via a decryption
function x = D(y). Thus D(E(x)) = x making D the inverse of E .

Function Properties. If we write function signature f : A → B then we are saying that f is a function with the
property that for every x in set A, f (x) is defined and is an element of B . Sets A and B are called the domain
and codomain of f , respectively. The range of f is defined as the elements of B that actually get mapped to:
{y |∃x ∈ A, f (x) = y}.

Example 1. Let Zn = {0,1,2, . . . ,n −1} and define f : Z5 →Z5 as f (x) = x2 mod 5. Then f (0) = 0, f (1) = 1, f (2) = 4,
f (3) = 4, f (4) = 1, and f is defined for no other inputs. The domain and codomain of f are both Z5 and the range
of f is {0,1,4}. □

A function is onto (also known as surjective) if every element of the codomain is mapped to by at least one el-
ement of the domain. A function is one-to-one (also known as injective) if every element of the codomain is
mapped to by no more than one element of the domain. A function is invertible (also known as bijective) if every
element of the codomain is mapped to by exactly one element of the domain, meaning it is both onto and one-
to-one. If a function is invertible, its domain and codomain will be the same size and its codomain and range will
be the same set. In Example 1, f is not invertible because elements of the codomain are not mapped-to. There
is no x in the domain Z5 where f (x) is 2 or 3. If f : A → B is invertible, then the inverse has signature f −1 : B → A
and f (x) = y implies f −1(y) = x.

Conceptually, you could test whether a function is invertible with a simple process. Make a two-column table
with the first column listing each of the function’s domain elements and the second column showing what each
of the domain elements maps to. If every codomain element is listed exactly once in the second column then the
function is invertible, otherwise it is not.

Example 2. Following the procedure just described, we see that the function from Example 1 is not invertible.
The second column does not contain every codomain element exactly once.

x f (x)

0 0
1 1
2 4
3 4
4 1 □

A function is a permutation function if it is invertible and its domain and codomain are the same set. It has this
name because when you write out such a function in tabular form the second column is a permutation of the
first column.

Random Functions. When we say “let f : A → B be a random function” we mean to define f by randomly
selecting from the set of all functions with the signature A → B and defining f to be the randomly selected
function. A more concrete conceptualization would use a table representation for f . To select a random function
f : A → B , write a two-column table with the first column listing each element of set A once. Then, in the second
column write a randomly chosen element of set B in each row.

1

Example 3. Let F = {apple,banana,cherry}. To create a random function f : Z4 → F , start with a two-column
table with the fist column listing each domain element once.

x f (x)

0
1
2
3

Next, fill each position in the second column with a randomly chosen element of F .

x f (x)

0 apple
1 cherry
2 banana
3 apple □

Once f has been defined it is fixed for the remainder of its existence. The value f (x) is a uniformly distributed
element of the codomain for each x in the domain, but repeated evaluations of f (x) return the same value when
x is held constant.

Random Permutation Functions. When we say “let f : A → A be a random permutation function” we mean to
define f by randomly selecting from the set of all permutation functions with the signature A → A and defining
f to be the randomly selected permutation function. A more concrete conceptualization would use a table rep-
resentation for f . To select a random permutation function f : A → A, write a two-column table with the first
column listing each element of set A once. Then, in the second column write a randomly chosen element of set
A in each row, but without ever repeating an element. The end result of this process is that the second column is
a random permutation of the first column.

Example 4. To create a random permutation function f : Z4 → Z4, start with a two-column table with the fist
column listing each domain element once.

x f (x)

0
1
2
3

Next, fill each position in the second column with a randomly chosen element of Z4, but each choice must
exclude any value already used.

x f (x)

0 1
1 3
2 0
3 2 □

Probability Distribution. To understand the probability distribution of f (x) for a randomly selected f we imag-
ine defining f in a table but in a lazy manner. Imagine that instead of fully defining f before it is used we instead
start with an empty second column for the definition table. Whenever f (x) is needed by an application of f the
table is consulted. If f (x) is already defined in the table its value is returned but, if it is not yet defined, a result

2

is randomly selected for f (x) and the table is updated. The probability distributions seen by the user of f are
identical whether f is initially fully-defined or is defined lazily.

If our lazy table is modeling a random function f : A → B , then f (x) is a uniformly distributed element of B for
each x in A. This is clear from our lazy method. For each x in A, f (x) is chosen uniformly from B .

If our lazy table is modeling a random permutation function f : A → A, then the distribution of f (x) changes
with each new invocation of f . On the first invocation f (x), the table has no entries in the second column and
so f (x) is free to be defined as any element of A. Thus, for all x and y in A, Pr[f (x) = y] = 1/|A|, meaning the
first time a random permutation function is invoked its resulting value is uniformly distributed. However, after
n different invocations of f , where f (x1) = y1, f (x2) = y2, ..., f (xn) = yn , and f (x) is a new invocation, the table is
consulted. Row x is empty but n other rows have definitions. Because f is a random permutation function, f (x)
must be chosen randomly from among the |A|−n remaining codomain elements. Symbolically, let x ̸= x1 ̸= · · ·xn

and y ̸= y1 ̸= · · · yn be elements of A, then Pr[f (x) = y | f (xi) = yi for 0 ≤ i ≤ n] = 1/(|A|−n).

If f : A → A is a randomly chosen permutation function then f (x) is a uniformly distributed element of A for
the first invocation of f because f (x) is free to be any value of A and each value of A is equally likely. A second
invocation f (x ′) on a different input x ′ ̸= x is not uniform, however, because f (x ′) is not allowed to equal f (x)
when f is invertible. To put these facts into symbols, for all x and y in A, Pr[f (x) = y] = 1/|A|, and for all x ̸= x ′ and
y ̸= y ′ in A, Pr[f (x ′) = y ′ | f (x) = y] = 1/(|A|−1). The first probability is saying that without any other knowledge,
f (x) is uniformly distributed, and the second probability is saying that once it’s known that f (x) = y then f (x ′)
is uniformly distributed among the remaining |A|−1 candidates. These probabilities are easy to see if you lazily
define f as needed. Imagine starting with an empty second column for the definition table of f . Whenever
f (x) is needed the table is consulted. If f (x) is defined its value is returned but if it is not yet defined a result is
randomly selected from the remaining |A|−1 elements.

Number of Functions. How many different functions exist with this signature? This can be computed using the
table-definition approach. Once the first column of the table is filled, each different second column represents a
different function. So, counting how many different functions exist is equivalent to counting how many different
second-columns exist. There are |B | candidates for the element in the first row, |B | candidates for the element in
the second row, etc. Since there are |A| rows, there are |B ||A| different second columns and hence |B ||A| different
functions f : A → B .

How many permutation functions f : A → A exist? Again we can use the table-definition of f as a counting
aid. The first entry of the second column can have any of the |A| codomain elements assigned to it. But, once
that entry is filled, the next entry cannot use the same value, which means there are |A| −1 candidates for the
second entry. The third entry has |A| −2 candidates and so on. When only one entry remains to be filled there
is only one candidate left. There are thus (|A|) · (|A|−1) · (|A|−2) · (|A|−3) · · · (1) = |A|! different second columns
and permutation functions. Another way of counting is to simply recognize that in a permutation function the
second column is a permutation of the first and includes every element of A. It is well known that there are |A|!
permutations of a sequence of length |A|.

Example 5. How many C functions take an int as input and return an int as output (and have no other side
effects such as changing other program state)? This is asking how many functions exist with the signature Int→
Int where Int is the set of all C ints. If we assume there are 232 different ints, which is usually the case since ints
are usually represented as 32 bits, then the number of functions with this signature is |Int||Int| = (232)(232) = 2237

.

How many such functions are permutation functions? If we were filling in a table to represent the C function’s
input/output behavior, the first entry would have 232 possible candidates, the second entry would have 232 −1
possible candidates, etc, until the last entry has but one candidate. There are therefore 232! ways to define the

3

permutation function. □

Mathematical Permutation Functions. Mathematics gives us several methods for devising permutation func-
tions. Several of which have been used historically to encrypt text.

Shift Cipher. Addition is invertible. f (x) = x +k has inverse f −1(y) = y +−k. This was used by Caesar, with k = 3,
to send encrypted messages. If we let A=0, B=1, ..., Z=25 and perform our operations mod 26 then we have exactly
the permutation Z26 →Z26 that Caesar used.

x f (x)

0 3
1 4
2 5
... ...
22 25
23 0
24 1
25 2

Multiplicative Cipher. Multiplication is invertible. f (x) = x ·k has inverse f −1(y) = y ·k−1. This works because
f −1(f (x)) = f −1(x ·k) = (x ·k) ·k−1 = x · (k ·k−1) = x · 1 = x, but only works if k ·k−1 = 1. If we want to stick to
integers so that we can represent text characters as above and avoid using a fraction for k−1 we can instead do
our multiplications mod an integer c. The integer value k is guaranteed to have an integer multiplicative inverse
k−1 mod c if and only if gcd(k,c) = 1. For example gcd(2,5) = 1, so there is a 2 ·2−1 mod 5 = 1. This means that
f (x) = x ·2 mod 5 is an invertible function Z5 →Z5.

x f (x)

0 0
1 2
2 4
3 1
4 3

Affine Cipher. If you compose two permutation functions with identical domains, the result is a permutation
function with the same domain. This is used as a way to improve the quality of a permutation function by
making it more complex. Let f (x) = x ·k1 mod c be a multiplicative cipher and g (x) = x +k2 mod c be a shift
cipher (with gcd(k1,c) = 1). Each is a permutation function with signature Zc →Zc . Their composition g (f (x)) =
x ·k1 +k2 mod c is also a permutation function with signature Zc →Zc .

RSA. The RSA function is used for public-key cryptography. Without explaining it right now, here’s an example of
an RSA permutation with signature Z15 →Z15: f (x) = x3 mod 15.

Computationally Efficient Permutation Functions: AXR. Mathematical functions can be expensive when im-
plemented – multiplication and division of large numbers takes a lot of CPU cycles – so most cryptography uses
computationally cheap invertible operations instead. If variable x is declared as a 32-bit unsigned int then
there are several operations that can be applied to x that are invertible.

x = x + k; // Because x is 32 bits long, computes (x = x + k) mod 2^32 automatically
x = x - k; // Restores x back to it’s original value
x = x ^ k; // Bitwise xor of x and k
x = x ^ k; // xor is its own inverse: 0^1^1=0, 0^0^0=0, 1^1^1=1, 1^0^0=1
x = ROTL(x, k); // Rotate the bits in x left k positions
x = ROTR(x, k); // Restores x back to it’s original value

4

Because these operations are each invertible and have signature {0,1}32 → {0,1}32, they can be composed and the result is
an invertible function with signature {0,1}32 → {0,1}32. These three operations – addition, XOR, rotation – are so commonly
used in cryptography that entire classes of permutation functions are designed using just them and are called AXR ciphers.
Some other simple operations on 32-bit values – such as other bitwise operations or bit-shift – are also efficient, but not
invertible.

Example. Write an invertible C function that takes an unsigned int as a parameter and returns an unsigned int as its
result. Use each of the AXR operations twice.

unsigned int permutation(unsigned int x) {
x = x + 0x82FA6C79;
x = (x << 17) | (x >> 15); // How to express x = ROTL(x,17) in C;
x = x ^ 0x29AE69D0;
x = x + 0x6A3E9B37;
x = (x << 3) | (x >> 29); // How to express x = ROTL(x,3) in C;
x = x ^ 0x802BFE62;
return x;

} □

Computationally Efficient Permutation Functions: Feistel. Another way to get an invertible function is with a Feistel
structure. In such a structure, the input is split in half, each half is then used in conjunction with a mixing function to
obscure the other half. For example, let f : {0,1}16 → {0,1}16 be any function; it doesn’t have to be invertible when used in a
Feistel structure. Then the following is invertible.

unsigned int permutation(unsigned int x) {
let a be the first 16 bits of x
let b be the second 16 bits of x
a = a xor f(b)
b = b xor f(a)
x = concat(a,b)
return x;

}

Sample Problems

These problems all come from prior quizzes or exams. They therefore represent some of the types of problems you should
be able to complete after reading and understanding this document.

1) Let’s say that you know an affine cipher is being used with the integer ring Z10, and you know plaintext integers 9 and
2 map to ciphertext integers 2 and 1 (respectively). What key is in use? Hint: This is two equations and two unknowns but
with a mod attached. The mod doesn’t effect the techniques you learned in algebra, so do those but keep the mods at the end
of each equation.

2) For Z15 list all the values that have multiplicative inverses and the multiplicative inverse of each.

3) Let’s say that p : {0,1}b → {0,1}b is a random invertible function and f : {0,1}b → {0,1}b is a random function, and that x
and y are different b-bit strings. Evaluate the following probabilities: (i) Pr[f (x) = f (y)], (ii) Pr[p(x) = p(y)], (iii) Pr[f (0) =
x ∧ f (1) = y], (iv) Pr[p(0) = x ∧p(1) = y]. Note: {0,1}b is the set of all b-bit strings.

4) For each of the following, write a C statement that if executed after the given one would return x to its previous value. If
not possible, give two x inputs that map to the same x output. In each, x is an unsigned int. (a) x = x + 2; (b) x = x
» 2; (c) x = x ˆ 2; (d) x = x | 2; (bitwise “or”)

5) How many functions are there that map one byte to one byte? Explain your answer in one short sentence. How big is the
domain and range? How many different bytes are there?

5

6) AES is a permutation function from 16 bytes to 16 bytes. How many permutation functions are there that map 16 bytes to
16 bytes? Explain your answer in one short sentence. How big is the domain and range? How many different 16 bytes strings
are there?

7) In one sentence explain what is the difference between an invertible function and an invertible permutation function?

8) Write an invertible function on eight bytes using a Feistel construction that takes two unsigned ints as an array and
uses ((x « 1) + x) as its mixing function. The high half of the eight bytes is the first element of the array and the low half
is the second. The result of the function should be put back into the array. Here’s the function header:

void permute(unsigned blk[2]) {

9) For the following, write a C statement that when executed after the given one returns x to its previous value. If not
possible, give the two simplest x input values mapping to the same x output. In each, x is an unsigned int. (a) x = x
>>> 2; (right rotation) (b) x = x / 2; (c) x = x & 2; (bitwise “and”)

10) Problem 5 on this quiz has you write a function that maps an input of eight bytes to an output of eight bytes. Mathe-
matically speaking, how many functions are there that map this size input to this size output? Explain your answer in one
short sentence.

11) How many of the functions that map an input of eight bytes to an output of eight bytes are permutation functions?
Explain your answer in one short sentence.

12) Let f (x) = 3x mod 7 be a function f : Z7 → Z7. What is the inverse of this function? Either depict the inverse as a
function diagram (ie, two-ovals with arrows depicting the mapping), or mathematically (ie, f −1(y) = . . . y . . .).

13) Let’s say you have a function f : A → B what properties are required of f for it to be invertible? If f is invertible, what
does this imply about A and B?

14) Let’s say you have a function f : A → B what properties are required of f for it to be a permutation? If f is a permutation,
what does this imply about A and B?

15) Below is a permutation function written in C. It takes eight bytes as input – represented as an array of two unsigned
ints – and puts the result back into the same array. Write its inverse using the below function header.

void permute(unsigned blk[2]) {
blk[0] = blk[0] ^ ((blk[1] << 1) + blk[1]);
blk[1] = blk[1] ^ ((blk[0] << 1) + blk[0]);

}

void inverse_permute(unsigned blk[2]) {

16) Which numbers in Z30 have a multiplicative inverse? Show your work.

17) What is 7’s multiplicative inverse in Z30? Document your search by showing everything you try.

18) Recall that the affine cipher (when using letters A=0..Z=25) is defined ea,b(x) = ax +b mod 26. If the ciphertext “TUD”
was created using key (a,b) = (3,20) what was the plaintext? Show your work.

19) Which numbers in Z24 have a multiplicative inverse? What is 4/7 mod 24? Show your work.

20) You intercept a large ciphertext created using a shift cipher on English plaintext and discover B is the most common
letter in the ciphertext. What can you assume is the shift key? The word WAWC is found in the ciphertext. Is your assumed
shift key correct? Explain.

6

