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1 VECTORS

1 Vectors

Jan 23Definition 1 (Vectors). Vectors are directed line segments, they have both magnitude and direction.
They exist in a “space,” such as the plane R2, ordinary space R3, or an n-dimensional space Rn.

• In R3, the vector v can be represented by its components as v = [v1, v2, v3].

• v can also be represented as a line segment with an arrowhead pointing in the direction of v.

Properties Vectors can be combined to form new vectors. Whether we are combining our vectors al-
gebraically (manipulating their components) or geometrically (manipulating their graphs), the following
properties apply: Let u, v, and w be vectors, and c and d be real numbers, then

u+ v = v + u commutative
(u+ v) + w = v + (u+ w) associative
c(du) = (cd)u associative
u+ 0 = u additive identity
u+ (−u) = 0 additive inverse
c(u+ v) = cu+ cv distributive
(c+ d)u = cu+ du distributive
1u = u multiplicative identity

Jan 27

Representing vectors Row vector:

V̄ = [2, 3]

Column vector:

V̄ =

[
2
3

]

Note 1. Vectors u and v are equivalent if they have the same length and direction.

1.1 Vector properties

Let ū = [1, 2] and v̄ = [3, 1].

ū+ v̄ = [1, 2] + [3, 1]

= [1 + 3, 2 + 1]

= [4, 3]

Geometrically, this is the “tip to tail” method. Any two vectors define a parallelogram.

Let ū = [1, 2], and think about ū+ ū.
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1 VECTORS 1.1 Vector properties

ū+ ū = [1, 2] + [1, 2]

= [2, 4]

2ū = 2[1, 2]

= [2, 4]

Also think about multiplying ū by -1:

(−1)ū = (−1)[1, 2]

= [−1,−2]

This points the vector in the opposite direction, which is considered “antiparallel”. So if the scalar in the
multiplication is a negative number, it will point the vector in the other direction (as well as being scaled).

Definition 2 (Scalar multiplication). For constant c and V̄ = [v1, v2, v3], then

cV̄ = [cv1, cv2, cv3]

Definition 3 (Vector subtraction).

ū− v̄ = ū+ (−v̄)

So with our existing vectors:

ū− v̄ = ū+ (−v̄)

= [1, 2] + [−3,−1]

= [−2, 1]

The sum and difference is the diagonals of the parallelogram created by adding the vectors.

Note 2. Vector addition is commutative, but vector subtraction is not (it is anticommutative).

v̄ − ū = [3, 1] + [−1,−2]

= [2,−1]

Note 3. All of these properties hold true in all dimensions: Rn.
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1 VECTORS 1.2 Linear combinations and coordinates

Concerning the additive identity: In R3 the “zero vector” is 0̄ = [0, 0, 0].

How to represent the length of a vector:

ū = [1, 2]

=
√

12 + 22

=
√

5

||ū|| =
√

5

We use the double bars to represent the length of a vector.

Jan 29

1.2 Linear combinations and coordinates

Definition 4. v̄ is a linear combination of a set of vectors, v̄1, v̄2, . . . , v̄k, if v̄ = c1v̄1, . . . , ck, v̄k for
scalars ci.

Example 1. See Handout 1.

Definition 5 (Standard Basis Vectors and Standard Coordinates). In R2 : ē1 = [1, 0], ē2 = [0, 1], these
are the standard basis vectors.

Then v̄ = [v1, v2],

and the standard coordinates of v̄ are v1, v2.

1.3 Dot Product

Feb 01Definition 6 (Dot Product). If ū = [u1, u2, . . . , un], v̄ = [v1, v2, . . . , vn], then the dot product of ū
with v̄ is

ū · v̄ = u1v1 + u2v2 + · · ·+ unvn

Example 2.

[2,−1, 7] · [3, 5,−2] = (2)(3) + (−1)(5) + (7)(−2)

= 6− 5− 14

= −13

Properties of dot products (scalar products) Let ū, v̄, w̄ be vectors, and c be a scalar, then

ū · v̄ = v̄ · ū commutative
ū · (v̄ + w̄) = (ū · v̄) + (ū · w̄) distributive
(cū) · v̄ = c(ū · v̄)
0̄ · v̄ = 0
v̄ · v̄ = v2

1 + v2
2 + · · ·+ v2

n
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1 VECTORS 1.3 Dot Product

Length In R2: ||v̄|| =
√
v2

1 + v2
2

In general: ||v̄|| =
√
v2

1 + v2
2 + · · ·+ v2

n

Example 3. If v̄ = [2,−1, 7], then the length is

||v̄|| =
√

22 + (−1)2 + 72

=
√

4 + 1 + 49

= 3
√

6

Note 4.

||v̄|| =
√
v̄ · v̄

Definition 7. A vector of length 1 is called unit vector. For any vector v̄ 6= 0̄: v̄
||v̄|| is a unit vector

in the same direction as v̄.

Note 5.

v̄

(
||v̄||
||v̄||

)
= ||v̄||

(
v̄

||v̄||

)

Example 4. In R2 : ē1 =

[
1
0

]
, ē2 =

[
0
1

]
, these are unit vectors.

Important inequalities

• Triangle inequality

The triangle created by the parallelogram of a vector addition, the length of any one side cannot be
greater than the sum of the other two sides.

||ū+ v̄|| ≤ ||ū||+ ||v̄||

• Cauchy-Schwarz inequality

|ū · v̄| ≤ ||ū|| ||v̄||

Proof by the Law of Cosines:
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1 VECTORS 1.4 Distance between vectors

c2 = a2 + b2 − 2ab cos θ

||ū− v̄||2 = ||ū||2 + ||v̄||2 − 2||ū|| ||v̄|| cos θ

(ū− v̄) · (ū− v̄) =

||ū||2 − 2(ū · v̄) + ||v̄||2 =

||ū||2 − 2(ū · v̄) + ||v̄||2 = ||ū||2 + ||v̄||2 − 2||ū|| ||v̄|| cos θ

ū · v̄ = ||ū|| ||v̄|| cos θ

|ū · v̄| = ||ū|| ||v̄||| cos θ|
|ū · v̄| ≤ ||ū|| ||v̄||.

Angle θ between vectors ū and v̄ Excluding the zero vector:

Let 0 ≤ θ ≤ π,

cos θ =
ū · v̄
||ū|| ||v̄||

So, θ = cos−1
(

ū·v̄
||ū|| ||v̄||

)
Note 6. If ū, v̄ 6= 0, then θ = π

2 , if and only if ū · v̄ = 0.

ū ⊥ v̄, iff ū · v̄ = 0

Feb 03

1.4 Distance between vectors

Definition 8. The distance between two vectors is the distance between their tips.

If ū = [u1, u2] and v̄ = [v1, v2], then

d(ū, v̄) =
√

(u1 − v1)2 + (u2 − v2)2

= ||ū− v̄||
= d(v̄, ū)

= ||v̄ − ū||

Example 5. In R3 :

For ū = [2,−1, 7] and v̄ = [3, 5,−2] :

Find the distance:
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1 VECTORS 1.5 Projections

d(ū, v̄) = ||ū− v̄||
= ||[(2− 3), (−1− 5), (7 + 2)]||
= ||[−1,−6, 9]||

=
√

(−1)2 + (−6)2 + 92

=
√

1 + 36 + 81

=
√

118

1.5 Projections

Definition 9. Let projūv̄ be the vector projection of v̄ onto ū, then the signed length of projūv̄ is given
by

||v̄|| cos θ = ||v̄|| ū · v̄
||v̄||||ū||

=
v̄ · ū
||ū||

So,

projūv̄ =

(
v̄ · ū
||ū||

)
ū

||ū||

=
( v̄ · ū
ū · ū

)
ū

Note 7. Recall, ū · ū = ||ū||2

Note 8. Remember, ū
||ū|| is the unit vector.

v̄ · ū
||ū||

= v̄
ū

||ū||

Example 6. For ū = [2, 1,−2] and v̄ = [3, 0, 8], find the projection of v̄ onto ū:
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1 VECTORS 1.6 Lines and planes

projūv̄ =
[3, 0, 8] · [2, 1,−2]

[2, 1,−2] · [2, 1,−2]
[2, 1,−2]

=
6 + 0− 16

4 + 1 + 4
[2, 1,−2]

=
−10

9
[2, 1,−2]

Since the coefficient is negative, the angle between the two vectors is more than 90 degrees.

1.6 Lines and planes

See Handout 2

Comparing vector and parametric forms:

x̄ = p̄+ td̄[
x
y

]
=

[
p1

p2

]
+ t

[
d1

d2

]
x = p1 + td1

y = p2 + td2

The solution to this is the line l.

Comparing the normal and general forms:

Let n̄ =

[
a
b

]
:

n̄ · x̄ = n̄ · p̄[
a
b

]
·
[
x
y

]
=

[
a
b

]
·
[
p1

p2

]
ax+ by = ap1 + bp2

ax+ by = c

Remember, ap1 + bp2 are constants, so we can call them c.

Example 7. See Handout 1.

Find an equation for that line that passes through the point (-3, 2) and is parallel to the vector [2, 1].

1. Vector form

8



1 VECTORS 1.7 Lines in R3

x̄ = p̄+ td̄[
x
y

]
=

[
−3
2

]
+ t

[
2
1

]

2. Parametric form

x = −3 + 2t

y = 2 + t

Feb 05
Example 8. Cont from previous example

3. General form

t =
x+ 3

2
=
y − 2

1
x+ 3 = 2y − 4

x− 2y = −7

4. Normal form

n̄ · x̄ = n̄ · p̄[
1
−2

]
·
[
x
y

]
=

[
1
−2

]
·
[
−3
2

]

Making sense of the normal form See handout 2’s graph

1. Note that x̄− p̄ is parallel to the line l.

2. Also, n̄ ⊥ (x̄− p̄) by definition of n̄.

3. Then, n̄ · (x̄− p̄) = 0 by a property of dot products.

We can use the distributive property:

n̄ · x̄− n̄ · p̄ = 0

n̄ · x̄ = n̄ · p̄

1.7 Lines in R3

See handout 2
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1 VECTORS 1.7 Lines in R3

Vector form

x̄ = p̄+ td̄xy
z

 =

p1

p2

p3

+ t

d1

d2

d3



Parametric form

x = p1 + td1

y = p2 + td2

z = p3 + td3

Example 9. See handout 2

Find vector and parametric forms for the equation for the line containing the points (2, 4, -3) and (3,
-1, 1).

p̄1 =

 2
4
−3


p̄2 =

 3
−1
1


d̄ = p̄2 − p̄1

=

 3
−1
1

−
 2

4
−3


d̄ =

 1
−5
4



Pick one of the points for our point vector p̄.

1. Vector form

x̄ = p̄+ td̄xy
z

 =

 2
4
−3

+ t

 1
−5
4


2. Parametric form

10



1 VECTORS 1.8 Planes in R3

x = 2 + t

y = 4− 5t

z = −3 + 4t

1.8 Planes in R3

See handout 2

Normal form Let n̄ =

ab
c


n̄ · x̄ = n̄ · p̄ab

c

 ·
xy
z

 =

ab
c

 ·
p1

p2

p3


General form

ax+ by + cz = ap1 + bp2 + cp3

ax+ by + cz = d

We can combine the constants on the right into one single constant, d.

Example 10. See handout 2

Find normal and general forms for the equation of the plane orthogonal to the vector [2,3,4] that passes
through the point (2,4,-1).

Let n̄ =

2
3
4

, and p̄ =

 2
4
−1

. We can start off by putting this in the normal form.

1. Normal form

n̄ · x̄ = n̄ · p̄2
3
4

 ·
xy
z

 =

2
3
4

 ·
 2

4
−1



2. General form

2x+ 3y + 4z = (2)(2) + (3)(4) + (4)(−1)

2x+ 3y + 4z = 12

11



1 VECTORS 1.8 Planes in R3

Example 11. See handout 2

Find a vector form for the plane in the previous example.

Let ū, v̄ be in the plane. Then, ū ⊥ n̄, v̄ ⊥ n̄, so

ū · n̄ = 0 v̄ · n̄ = 0

And, ū is not parallel to v̄.

Let ū =

u1

u2

0

, where u3 = 0. Then,

n̄ · ū = 02
3
4

 ·
u1

u2

0

 = 0

2u1 + 3u2 = 0

Let ū =

 3
−2
0

.

Let v̄ =

v1

0
v3

, where v2 = 0.

Then,

n̄ · v̄ = 02
3
4

 ·
v1

0
v3

 = 0

2v1 + 4v3 = 0

Let v̄ =

 2
0
−1

.

So the vector form is

x̄ = p̄+ sū+ tv̄xy
z

 =

 2
4
−1

+ s

 3
−2
0

+ t

 2
0
−1
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2 SYSTEMS OF LINEAR EQUATIONS

And our parametric form is

x = 2 + 3s+ 2t

y = 4− 2s

z = −1− t

2 Systems of Linear Equations

Feb 08Definition 10. A linear equation in the n variables x1, x2, . . . , xn is an equation that can be written
in the form:

a1x2 + a2x2 + · · ·+ anxn = b

where the coefficients a1, . . . , an and the constant term b is constant.

Definition 11. A finite set of linear equations is a system of linear equations. A solution set of
a system of linear equations is the set of all solutions of the system. A system of linear equations is
either “consistent” if it has a solution, or it is “inconsistent” if there is no such solution.

Theorem 1. A system of linear equations has either

1. A unique solution – consistent

2. Infinitely many solutions – consistent

3. No solution – inconsistent

Definition 12. Two linear systems are said to be equivalent if they have the same solution set.

Example 12. See handout 3, problem 1

2x+ y = 8

x− 3y = −3

y = 2, x = 3

Example 13. See handout 3, problem 2

Example 14. See handout 3, problem 1

Let

13



2 SYSTEMS OF LINEAR EQUATIONS 2.1 Direct methods of solving systems

A =

[
2 1
1 −3

]

be the matrix of coefficients, and let

b̄ =

[
8
−3

]

Be the vector of constants.

Then,

[A | b̄] =

[
2 1 | 8
1 −3 | −3

]

is called the augmented matrix.

2.1 Direct methods of solving systems

Feb 10Example 15. For the system

2x− y = 3

x+ 3y = 5

The coefficient matrix A is

A =

[
2 −1
1 3

]

The constant vector b̄ is

b̄ =

[
3
5

]

The augmented matrix is

[A | b̄] =

[
2 −1 | 3
1 3 | 5

]

Definition 13 (Row echelon form of a matrix). See handout 4

14



2 SYSTEMS OF LINEAR EQUATIONS 2.2 Gaussian and Gauss-Jordan Elimination

2.2 Gaussian and Gauss-Jordan Elimination

Feb 12To solve a system of linear equations using Guassian Elimination:

• Write out an augmented matrix for the system of linear equations

• Use elementary row operations to reduce the matrix to row echelon form

• Write out a system of equations corresponding to the row echelon matrix

• Use back substitution to find solution(s), if any exist, to the new system of equations

To solve the system of linear equations using Gauss-Jordan Elimination: reduce the augmented matrix to
reduced row echelon form

• Write out the system of equations corresponding to the reduced row echelon matrix

• Use back substitution to find solution(s), if any exist, to the new system of equations

Example 16. See handout 5

Feb 15
Example 17. See handout 5

2.3 Spanning Sets and Linear Independence

Feb 17Definition 14 (Linear Combinations of Vectors). Let V̄ be a linear combination of the set of vectors
V̄1, . . . , V̄k, if you can write V̄ as the sum of scalar multiples of the set of vectors,

V̄ = c1V̄1 + · · ·+ ckV̄k

for constants c1, . . . , ck.

Example 18. Is

[
8
−3

]
a linear combination of

[
2
1

]
and

[
1
−3

]
?

Alternatively, does

[
8
−3

]
= x

[
2
1

]
+ y

[
1
−3

]
have a solution?

Equivalently, does the following system have a solution?

2x+ y = 8

x− 3y = −3

15



2 SYSTEMS OF LINEAR EQUATIONS 2.3 Spanning Sets and Linear Independence

[
2 1 8
1 −3 −3

]
= R1 ↔ R2

[
1 −3 −3
2 1 8

]
= R2 − 2R1

[
1 −3 −3
0 7 14

]
=

1

7
R2

[
1 −3 −3
0 1 2

]
= R1 + 3R2

[
1 0 3
0 1 2

]

So,

x = 3 y = 2

Example 19. For what values a, b will

[
a
b

]
be a linear combination of

[
2
1

]
and

[
1
−3

]
?

[
a
b

]
= x

[
2
1

]
+ y

[
1
−3

]

If and only if,

2x+ y = a

x− 3y = b

So we can solve it using our augmented matrix:

[
2 1 a
1 −3 b

]
= R1 ↔ R2

[
1 −3 b
2 1 a

]
= R2 − 2R1

[
1 −3 b
0 7 a− 2b

]
=

1

7
R2

[
1 −3 b
0 1 a−2b

7

]
= R1 + 3R2

[
1 0 b+ 3(a−2b

7 )
0 1 a−2b

7

]
=

[
1 0 3a+b

7

0 1 a−2b
7

]

So we have

16



2 SYSTEMS OF LINEAR EQUATIONS 2.3 Spanning Sets and Linear Independence

x =
3a+ b

7

y =
a− 2b

7

So the answer is that any choice of a, b will work. We can say that

[
2
1

]
,

[
1
−3

]
“span” the plane (R2).

Definition 15 (Spanning Sets). If S = {V̄1, . . . , V̄k} is a set of vectors in Rn, then the set of all linear
combinations of V̄1, . . . , V̄k is called the span of V̄1, . . . , V̄k, or

span(S)

If the span(S) = Rn, then we say S is a spanning set of Rn.

Example 20. Describe the span of S where

S = {

1
0
3

 ,
−1

1
−3

}

Another way to think about is it, what vectors

ab
c

 are in the span of S?

ab
c

 = x+

1
0
3

+ y

−1
1
−3



So,

x− y = a

y = b

3x− 3y = c

So we can use our augmented matrix:

17



2 SYSTEMS OF LINEAR EQUATIONS 2.4 Linear Independence

1 −1 a
0 1 b
3 −3 c

 = R3 − 3R1

1 −1 a
0 1 b
0 0 c− 3a


= R1 +R2

1 0 a+ b
0 1 b
0 0 c− 3a



So this system only has solutions if c− 3a = 0 or c = 3a. So vectors of the form

 ab
3a

 form the span of

S.

Note 9. Linear systems of the form

x− y = a

y = b

3x− 3y = 3a

have solutions for a, b arbitrarily. a, b are the free variables, but the third variable must be 3 times a.

2.4 Linear Independence

Feb 22Definition 16. A set of vectors v̄1, . . . , v̄k is linearly dependent if there are scalars c1, . . . , ck (not
all zero), such that

c1v̄1 + · · · ckv̄k = 0̄

Otherwise, the set is linearly independent.

Example 21. Decide if the set {

1
2
0

 ,
 1

1
−1

 ,
1

4
2

} is linearly independent.

So this is asking if this is true:

c1 +

1
2
0

+ c2

 1
1
−1

+ c3

1
4
2

 =

0
0
0



for non-trivial constants.

18



2 SYSTEMS OF LINEAR EQUATIONS 2.4 Linear Independence

This leads to an augmented matrix:

1 1 1 0
2 1 4 0
0 −1 2 0

 = R2 − 2R1

1 1 1 0
0 −1 2 0
0 −1 2 0


= R1 +R2 and R3 −R2

1 0 3 0
0 −1 2 0
0 0 0 0


= (−1)R2

1 0 3 0
0 1 −2 0
0 0 0 0



So we have

c1 + 3c3 = 0

c2 − 3c3 = 0

So we can solve for c3 :

c1 = −3c3

c2 = 2c3

So c3 is arbitrary, it doesn’t have to be 0. So the answer has non-trivial solutions, therefore it is linearly
dependent.

−3c3

1
2
0

+ 2c3

 1
1
−1

+ c3

1
4
2

 = c3

0
0
0


This is called the “linear dependence relation.”

Note 10. A matrix with all 0s in the rightmost column is called a homogeneous system of equations.

Theorem 2. Any set of m vectors in Rn is linearly dependent if m > n.

Example 22. Consider this set of vectors

S = {
[
1
0

]
,

[
0
1

]
,

[
0
2

]
}
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3 MATRICES

We can tell without doing anything else that these vectors have to be dependent. They are in R2, but
there are 3 vectors total. We are guaranteed that there is a non-trivial linear combination that will
make the 0̄.

0

[
1
0

]
+ 2

[
0
1

]
−
[
0
2

]
=

[
0
0

]

However, it does not guarantee that one of the vectors can be solved as a linear combination of the
others:

[
1
0

]
= c1

[
0
1

]
+ c2

[
0
2

]

has no solution.

Feb 24
Example 23. See handout 6

3 Matrices

See handout X

Mar 01See handout 7

Mar 05See handout 8

3.1 Subspaces of Matrices

Mar 10Definition 17. Subspaces of Rn: A collection S of vectors in Rn such that

1. The zero vector 0̄ is in S

2. If ū, v̄ are both in S, then ū+ v̄ are in S

3. If ū is in S, then any scalar multiple cū is in S.

If all are true, then S is a subspace in Rn

You can combine 2 and 3 above as: If ū1, . . . , ūk are in S and c1, . . . , ck are scalars, then c1ū1 + · · ·+ ckūk
is in S. S is closed under linear combinations.
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3 MATRICES 3.2 Nullspace

Theorem 3. Let v̄1, . . . , v̄k be vectors in Rn, then S = span(v̄1, . . . , v̄k) is a subspace of Rn.

Proof:

Recall that the span of a set of vectors (v̄1, . . . , v̄k) is the set of all linear combinations of v̄1, . . . , v̄k.

1. 0̄ = 0v̄1 + · · ·+ 0v̄k, so 0̄ is in the span S.

2. Let ū = c1ū1 + · · ·+ ckūk, then by definition ū is in the span S. Also, v̄ = d1v̄1 + · · ·+ dkv̄k

ū+ v̄ = (c1v̄1 + · · ·+ ckv̄k) + (d1v̄1 + · · ·+ dkv̄k)

= (c1 + d1)v̄1 + · · ·+ (ck + dk)v̄k

So ū+ v̄ is in the span S.

3. If ū is in S, then cū = c(c1v̄1 + · · ·+ ckv̄k), then

cū = c(c1v̄1 + · · ·+ ckv̄k)

= cc1v̄1 + · · ·+ cckv̄k

So cū is in S.

Example 24. See handout 11

3.2 Nullspace

Mar 12Example 25. See handout 11

3.3 Column space

Mar 173.4 Linear transformations

See handout 12
Mar 29

Definition 18. The map T : Rn → Rm is linear if

1. T (ū+ v̄)︸ ︷︷ ︸
Rn

= T ( ū︸︷︷︸
Rm

) + T ( v̄︸︷︷︸
Rm

)

2. T (cv̄) = cT (v̄)

Alternatively: T (cū+ dv̄) = cT (ū) + dT (v̄)

For every ū, v̄ ∈ Rn, and c, d 6= 0
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3 MATRICES 3.4 Linear transformations

Theorem 4. See Theorem 3.30 in Poole

Let A be an m× n matrix. Then the map defined by Ax̄ is a linear for x̄ ∈ Rn

Proof:

A(cū+ dv̄) = cAū+ dAv̄ by properties of matrix multiplication.

We can write this as TA(x̄) = Ax̄

Theorem 5. See Theorem 3.31 in Poole This is an
important
theorem!

Let T : Rn → Rm be a linear transformation. Then there is a m × n matrix A such that T = TA.
Specifically let ē1, . . . , ēn be the standard basis for Rn.

ē1 =

1
0
...

 ēn =

0
...
1


So we can find A by:

A = [T (ē1) | . . . | T (ēn)]m×n

See notes for proof

x̄ = x̄1ē1 + · · ·+ x̄nēn

T (x̄) = T (x̄1ē1 + · · ·+ x̄nēn

= x̄1T (ē1) + · · ·+ xnT (ēn)

=
[
T (ē1) . . . T (ēn)

]

x1

x2

...
xn


T (x̄) = Ax̄

Example 26. See handout 14

Apr 02
Example 27. See handout 14, example 3

Let T : R2 → R2 be the projection of the vector v̄ onto the line ` through the origin.

See notes for drawing

Show that T is a linear transformation.
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3 MATRICES 3.4 Linear transformations

Let d̂ =

[
d1

d2

]
be a direction vector for `, where ||d̂|| =

√
d2

1 + d2
2. Note that

T (v̄) = projd̂v̄

=

(
v̄ · d̂
||d̂||2

)

So our strategy is to find T (ē1) and T (ē2).

T (ē1) = projd̂ē1

=


[
1
0

]
·
[
d1

d2

]
||d̂||2

 d̂

= d1

[
d1

d2

]
=

[
d2

1

d1d2

]

T (ē2) = projd̂ē2

=


[
0
1

]
·
[
d1

d2

]
1

 d̂

= d2

[
d1

d2

]
=

[
d1d2

d2
2

]

So the standard matrix of T is

A =

[
d2

1 d1d2

d1d2 d2
2

]

So, the projection onto a line through the origin is a linear transformation.

Example 28. Special case:

Project v̄, in the plane, onto the x-axis.

Let v̄ =

[
x
y

]
We can drop this to the x-axis, and see that

T (v̄) =

[
x
0

]
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3 MATRICES 3.4 Linear transformations

Let

d̂ =

[
d1

d2

]
=

[
1
0

]
= ē1

We can use our standard matrix we found in the previous example. Note that d1 = 1 and d2 = 0.

A =

[
d2

1 d1d2

d1d2 d2
2

]
=

[
1 0
0 0

]

Example 29. Another special case:

Project v̄, in the plane, onto the line y = x.

We can use our standard matrix we found in the previous example.

Let x̄ =

[
x
y

]
, and

d̂ =

[
d1

d2

]
=

[
a
a

]

where

||d̂|| =
√
a2 + a2

= d
√

2a2A

= |a|d
√

2

= 1

|a| = 1√
2

Let

d̂ =

[
1√
2

1√
2

]
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3 MATRICES 3.4 Linear transformations

So

A =

[
1
2

1
2

1
2

1
2

]
=

1

2

[
1 1
1 1

]

T (v̄) = Av̄

=
1

2

[
1 1
1 1

] [
x
y

]
=

1

2

[
x+ y
x+ y

]
=

[
x+y

2
x+y

2

]

Both components equal the average of the components in the original vector. This is important in
statistics.

Example 30. Derive the formula for cos(α+ β) and sin(α+ β).

Recall the rotation matrix from Example 1 on Handout 14 that

A =

[
cos θ − sin θ
sin θ cos θ

]

T (v̄) =

[
cosβ − sinβ
sinβ cosβ

] [
cosα
sinα

]
=

[
cosβ cosα− sinβ sinα
sinβ cosα+ cosβ sinα

]
=

[
cos(α+ β)
sin(α+ β)

]

So, since the components of equal vectors are equal to each other:

cos(α+ β) = cosβ cosα− sinβ sinα

sin(α+ β) = sinβ cosα+ cosβ sinα

However, usually the text book will rearrange this:

cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ
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3 MATRICES 3.4 Linear transformations

We can also find the difference of the angles by thinking about

cos(α− β) = cos(α+ (−β))

cos(−β) = cosβ

sin(−β) = − sinβ

Apr 05
Example 31. Additional questions for example 3 on Handout 14 :

Recall: T : R2 → R2 and T (v̄) = Av̄.

1. What is the range of the projection?

The line ` is the range. Since every vector gets projected onto `, that is the range.

2. Is the line ` a subspace of R2?

Yes! Recall that spaces need to include the zero vector 0̄.

• The line ` contains the point (0, 0).

• If ū||`, then ū+ v̄||`.

• If ū||`, then cū||`.

3. Find a basis for the subspace `.

{
[
d1

d2

]
}

ū = ad̂

v̄ = bd̂

ū+ v̄ = ad̂+ bd̂

= (a+ b)d̂

So, (a+ b)d̂||`.

cū = c(ad̂)

= (ca)d̂

and, (ca)d̂||`.

4. Describe the column space of A. Recall:

A =

[
d2

1 d1d2

d1d2 d2
2

]

The answer is the line `.

Av̄ = b̄

A big takeaway: the range of T is the column space of A.
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3 MATRICES 3.4 Linear transformations

Lets find the column space of A, using the augmented matrix:

[A | b̄] =

[
d2

1 d1d2 a
d1d2 d2

2 b

]
= (d2)R1, (d1)R2

[
d2

1d2 d1d
2
2 d2a

d2
1d2 d1d

2
2 d1b

]
= R2 −R1

[
d2

1d2 d1d
2
2 d2a

0 0 d1b− d2a

]
d1b = d2a

b =
d2

d1
a

Notice that this is a line through the origin with a slope of m = d2
d1

, which is the line `. So the
column space of the matrix A is the same as the range of T . The basis for the column space is
the same as the basis of the range of T .

Col(A) = {
[
d1

d2

]
}

5. What is the rank of A?

The Rank(A) = dim(Col(A)) = dim(Row(A)), so the rank is 1.

6. Describe the null space of A. We are looking for Av̄ = 0̄.

Any vector that is orthogonal to ` and passes through the origin will be projected to the zero
vector. This is the line `2 where the slope is m = −d1d2 .

So lets show this analytically:

[A | 0̄] =

[
d2

1 d1d2 0
d1d2 d2

2 0

]
=

[
d2

1d2 d1d
2
2 0

0 0 0

]
d1x+ d2y = 0

y = −d1

d2
x

7. Find a basis for the null space Null(A).

{
[
d2

−d1

]
}

Example 32. Let T : Rm → Rn with a standard matrix A, and S : Rn → Rp with a standard matrix
B.

S(T (v̄)) = S(Bv̄)

= A(Bv̄)

= (AB)v̄

= (S ◦ T )(v̄)
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3 MATRICES 3.5 Composition of linear transformations

3.5 Composition of linear transformations

Apr 07Definition 19. If S(ū) = Aū and T (v̄) = Bv̄, then

S(T (v̄)) = (S ◦ T )(v̄)

= ABv̄

and AB is the standard matrix for this composition (S ◦ T )(v̄).

Example 33. Show that reflection in the plane about the x-axis is a linear transformation.

See notes for drawing

T : R2 → R2.

T (ē1) = T

([
1
0

])
=

[
1
0

]
= ē1

T (ē1) = T

([
1
0

])
=

[
0
−1

]
= −ē2

So the standard matrix for T is

A =

[
1 0
0 −1

]

Since we found a matrix that implements the transformation, that means that reflection about the
x-axis must be linear.

Example 34. Let Fx : R2 → R2 be a reflection about the x-axis. Let Rθ : R2 → R2 be a rotation by
θ. Find the standard matrix for R60 deg(Fx(v̄)).

See notes for drawing

R60 deg =

[
cos 60 −sin60
sin60 cos60

]
Fx =

[
1 0

0− 1

]
R60 ◦ Fx =

[
1
2 −

√
3
−2√

3
2

1
2

]

=

[
1
2

√
3

2√
3

2 − 1
2

]
v̄
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3 MATRICES 3.6 Inverses of linear transformations

This is the standard matrix for reflection about the x-axis followed by rotation of 60 degrees.

Example 35. Find the standard matrix that rotates by 60 degrees, then reflects about the x-axis. This
is reverse order of the previous problem.

Fx(R60(v̄)) = (Fx ◦R60)(v̄)

=

[
1 0
0 −1

][
1
2 −

√
3

2√
3

2
1
2

]

=

[
1
2 −

√
3

2

−
√

3
2 − 1

2

]

This is the standard matrix for (Fx ◦R60)(v̄).

3.6 Inverses of linear transformations

Definition 20. Let T : Rn → Rn be a linear transformation, then T−1 is the inverse linear transfor-
mation, if

T−1(T (v̄)) = v̄

T (T−1(v̄)) = v̄

Let A be the standard matrix of T , then T has an inverse T−1 if and only if A has an inverse. Further-
more, the standard matrix of the inverse T−1 is A−1.

T−1(T (v̄)) = T−1(Av̄)

= A−1(Av̄)

= (A−1A)v̄

= Iv̄

= v̄

Example 36. Let R60 : R2 → R2 be a rotation by 60 degrees. What is the inverse R−1
60 ?

See notes for drawing

We are looking for something that rotates by a negative 60 degrees.

R−1
60 = R−60

=

[
cos(−60) − sin(−60)
sin(−60) cos(−60)

]
=

[
cos(60) sin(60)
− sin(60) cos(60)

]
=

[
1
2

√
3

2

−
√

3
2

1
2

]
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3 MATRICES 3.6 Inverses of linear transformations

Lets check

R−1
60 (R60(v̄)) =

[
1
2

√
3

2

−
√

3
2

1
2

][
1
2 −

√
3

2√
3

2
1
2

]

=

[
1 0
0 1

]

Example 37. Find the inverse of the reflection Fx. We are looking for F−1
x . Since the reflection

happening a second time returns the vector to its original position, it is its own inverse. The standard
matrix is [

1 0
0 −1

]
You can check this by multiplying it by itself, and it returns the identity matrix I.

Example 38. Does projection onto the line ` (through the origin) have an inverse (in the plane)?
P` : R2 → R2.

See notes for drawing.

The standard matrix of P` is

P` =

[
d2

1 d1d2

d1d2 d2
1

]

Where d̂ =

[
d1

d2

]
is a unit direction vector for `.

Since there is an infinite number of vectors that will project to the new vector on `, so there is no
inverse. Also, since the standard matrix P` is invertible, P−1

` does not exist.

Apr 09
Example 39. See problem 26 in 3.6 of Poole

If the angle between ` and the positive x-axis is θ, show that the matrix of F` is[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]

See notes for drawing
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4 EIGENVALUES AND EIGENVECTORS

We can rotate the entire plane so it is then a reflection about the x-axis.

Rθ(Fx(R−1
θ (v̄))) = Rθ(Fx(R−θ(v̄)))

= (Rθ ◦ Fx ◦R−θ)(v̄)

= F`(v̄)

=

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ
− sin θ cos θ

]
︸ ︷︷ ︸

standard matrix of F`

=

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
sin θ − cos θ

]
=

[
cos2 θ − sin2 θ cos θ sin θ + sin θ cos θ

sin θ cos θ + cos θ sin θ sin2 θ − cos2 θ

]
=

[
cos2 θ − sin2 θ 2 sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ

]
=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]

Aside 1.

cos 2θ = cos(θ + θ)

= cos2 θ − sin2 θ

4 Eigenvalues and Eigenvectors

Definition 21. Let A be a n × n matrix. A scalar λ is an eigenvalue of the matrix A if there is a
non-zero vector v̄ such that

Av̄ = λv̄

where v̄ is an eigenvector associated with λ.

Eigenvector can be abbreviated e-vector, and eigenvalue can be abbreviated e-value.

Note 11. If λ is real, then the new vector will be parallel to the original vector. It is possible that
λ is complex.
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4 EIGENVALUES AND EIGENVECTORS

Example 40. Show that

[
2
−3

]
is an eigenvector of the matrix

[
1 −2
−3 2

]
and find its eigenvalue.

Av̄ = λv̄[
1 −2
−3 2

] [
2
−3

]
=

[
8
−12

]
= 4

[
2
−3

]

So

[
2
−3

]
is an e-vector with an e-value of λ = 4.

Example 41. Show that λ1 = −2 and λ2 = 5 are e-values of the matrix

[
2 3
4 1

]
and find associated

e-vectors.

We’ll start with λ1 = −2 :

Av̄1 = −2v̄1

Av̄1 + 2v̄1 = 0̄

Av̄1 + 2Iv̄1 = 0̄

(A+ 2I)v̄1 = 0̄

So v̄1 is in the null space of A+ 2I.

Aside 2.

2I = 2

[
1 0
0 1

]
=

[
2 0
0 2

]

A+ 2I = A− λI

=

[
2 3
4 1

]
+

[
2 0
0 2

]
=

[
4 3
4 3

]

We are looking for v̄ that is in the null space.

[
A+ 2I 0̄

]
=

[
4 3 0
4 3 0

]
=

[
4 3 0
0 0 0

]
4x+ 3y = 0
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5 DETERMINANTS

Let v̄1 =

[
3
−4

]
, then v̄1 =

[
3
−4

]
is an e-vector for λ1 = −2. We can check this by

Av̄1 = −2v̄1[
2 3
4 1

] [
3
−4

]
= −2

[
3
−4

]
=

[
−6
8

]
= −2

[
3
−4

]

Apr 14
Example 42. See handout 16

Apr 16
Example 43. See handout 16 example 2

5 Determinants

See handout 18

5.1 Cofactor expansion

Apr 19Example 44. See handout 18 example at end on cofactors

5.2 Invertibility

Definition 22. If a matrix A is full rank and square (n × n ), then it will row reduce to the identity
matrix In×n. Therefore,

• The matrix is invertible. [
A | I

]
→
[
I | A−1

]
• The determinant is non-zero.

Apr 21Less than full rank n× n matrices row reduce to a row of zeros at the bottom of the matrix. Therefore,

• It will have a zero determinant.

• It will not be invertible.

Theorem 6. The n× n matrix A is invertible if and only if det(A) 6= 0.

See more theorems in handout 18

5.3 Cramer’s rule
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5 DETERMINANTS 5.4 Determinants and Eigenvalues

Definition 23. See handout 18

Let A be an invertible n× n matrix, and let b̄ be any vector in Rn. Then the unique solution x̄ of the
system Ax̄ = b̄ is given by

xi =
det(Ai(b))

detA

for i = 1, . . . , n.

Note that Ai(b) is created by replacing the ith column of A with the vector b̄.

Example 45. See handout 18, example on Cramer’s rule

5.4 Determinants and Eigenvalues

Apr 23See handout 19

To find the eigenvalues and eigenvectors:

1. Find λ such that det(A− λI) = 0.

2. Substitute into the equation

[A− λI]v̄ = 0̄

and solve for v̄.

Example 46. See handout 19 example 1

Example 47. See handout 19 example 2a/b

Apr 26
Example 48. See handout 19 example 3

Example 49. See handout 19 example 4

5.5 Similarity and Diagonlization

Apr 28Definition 24. For n× n matrices A and B, A is similar to B, written A ∼ B, if an invertible n× n
matrix P exists such that

P−1AP = B

Definition 25. An n× n matrix A is diagonalizable if there is a diagon matrix D that is similar to
A.

Theorem 7. The n × n matrix A is diagonalizable if and only if A has n linearly independent eigen-
vectors. (Deficient matrices need not apply!)
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6 DISTANCE AND APPROXIMATION

Example 50. See handout 20 example 1

Apr 30
Theorem 8. Let P be the matrix whose columns are independent eigenvectors of matrix A. Then the
entries of diagonal marix D = P−1AP are the eigenvalues of A.

Proof:

Let P be an invertible matrix of eigenvectors of An×n. Let P̄j be the jth column of vector P .

P =
[
P̄1 · · · P̄n

]
Then

P−1P = P−1
[
P̄1 · · · P̄n

]
=
[
P−1P̄1 · · · P−1P̄n

]
=
[
ē1 · · · ēn

]
= In×n

Now,

P−1AP = P−1A
[
P̄1 · · · P̄n

]
= P−1

[
AP̄1 · · · AP̄n

]
= P−1

[
λ1P̄1 · · · λnP̄n

]
=
[
λ1P

−1P̄1 · · · λnP
−1P̄n

]
=
[
λ1ē1 · · · λnēn

]
= λIn×n

Where λIn×n is the corresponding eigenvalues along the diagonal of I. So, A ∼ D where the diagonal
entries of D are the corresponding eigenvalues.

Example 51. See handout 20 example 3

Example 52. See handout 20 example 4

May 03

6 Distance and approximation

6.1 Least squares approximation

See handout 21

Recall our Ax̄ = b̄ problem, where A is a m×m matrix, and x̄ is what we’re solving for.

Recognizing that Ax̄ = b̄ has no solution for most overdetermined systems, we transform the problem into
a related (but different) problem,

ATAx̃ = AT b̄

Note 12. Overdetermined systems are when we have more equations than variables. It is also certain
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6 DISTANCE AND APPROXIMATION 6.1 Least squares approximation

that we don’t have a solution because we have too many constraints on the variables.

We are only considering the case where A is full rank, rank(A) < min{m,n} for skinny matrices, m > n,
rank(A) ≤ n, where A is full rank if rank(A) = n, if and only if the columns of A form a linearly independent
set.

rank(ATA) = rank(AAT ) = rank(A) = n

x̃ is called the least squares approximation for Ax̄ = b̄.
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Date Index

Apr 02, 22

Apr 05, 26

Apr 07, 28

Apr 09, 30

Apr 14, 33

Apr 16, 33

Apr 19, 33

Apr 21, 33

Apr 23, 34

Apr 26, 34

Apr 28, 34

Apr 30, 35

Feb 01, 4
Feb 03, 6
Feb 05, 9
Feb 08, 13
Feb 10, 14
Feb 12, 15
Feb 15, 15
Feb 17, 15
Feb 22, 18
Feb 24, 20

Jan 23, 2
Jan 27, 2
Jan 29, 4

Mar 01, 20
Mar 05, 20
Mar 10, 20
Mar 12, 21
Mar 17, 21
Mar 29, 21
May 03, 35
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