
1/28/2015

1

COMBINATIONAL CIRCUITS

SMALL DESIGNS

Digital Logic Design and Computer Organization with Computer Architecture for Security 1

In this Chapter
 Small Combinational Circuits

 Fewer inputs (e.g., ≤ 4 inputs)
 Circuits modeled as Truth Tables
 Circuit minimization techniques

 Circuit implementation options
 NANDs only
 NORs only

 Timing diagram
 Signal propagation delay
 Understating signal hazards (“glitches”)

 Other types of logic gates
 Design examples
 Introduction to design with HDL

Digital Logic Design and Computer Organization with Computer Architecture for Security 2

Small Combinational Circuits
 Example: 2-bit unsigned

multiplier, P = A * B

 Block diagram and truth table
 Labeling of input and output

signals

 Implementation options
 LUT

 Easier, slower, configurable

 Logic circuit
 Faster, less hardware

a1 a0 b1 b0 p3 p2 p1 p0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Inputs Outputs

Digital Logic Design and Computer Organization with Computer Architecture for Security 3

Signal Naming Standards
 Active-high signal polarity

 1 represents signal is active, asserted, enabled

 0, otherwise

 E.g., signal labeled as x without a pre- or post symbol

 Active-low signal polarity
 0 represents signal is active, asserted, enabled

 1, otherwise

 E.g., signal labeled as _x, x’, /x, or x#
 With a pre- or post-symbol

_c x y

0 0 1
0 1 0
1 0 0
1 1 1

Digital Logic Design and Computer Organization with Computer Architecture for Security 4

Primitive Logic Gates with
Truth Tables

x f
0 1
1 0

x y f
0 0 0
0 1 0
1 0 0
1 1 1

x y f
0 0 0
0 1 1
1 0 1
1 1 1

x y f
0 0 1
0 1 1
1 0 1
1 1 0

x y f
0 0 1
0 1 0
1 0 0
1 1 0

x y f
0 0 0
0 1 1
1 0 1
1 1 0

x y f
0 0 1
0 1 0
1 0 0
1 1 1

Digital Logic Design and Computer Organization with Computer Architecture for Security 5

SOP Expressions
 Based on input values that produce 1 as output
 Each such input is expressed as a product term
 Circuit performs AND-OR logic

 Can be implemented with NAND gates

 DeMargan’s theorems convert AND-OR circuit into
NAND-only circuit

݂ ൌ തݕ	ݔ̅ ൅ ݕ	ݔ

sum

product

Digital Logic Design and Computer Organization with Computer Architecture for Security 6

1/28/2015

2

POS Expressions
 Based on input values that produce 0 for f (an output)

 Same input values produce 1 for ࢌത

 Find expression for f by complementing ࢌത
 Each such input is expressed as a sum term

 Circuit performs OR-AND logic

 Can be implemented with NOR gates
 DeMargan’s theorems convert OR-AND circuit into NOR-

only circuit
 Also can use signal negation with Dual principle

SOP of ݂̅ ൌ ݕ	ݔ̅ ൅ തݕ	ݔ

݂ ൌ 	 ݕ	ݔ̅ ൅ തݕ	ݔ

݂ ൌ ሺ̅ݔ	ݕሻሺݔ	ݕതሻ

݂ ൌ ሺݔ ൅ ݔതሻሺ̅ݕ ൅ ሻݕ	

Digital Logic Design and Computer Organization with Computer Architecture for Security 7

Show mathematically
 NAND implementation

 NOR implementation

Theorem 2

ݔ ൅ ݕ ൌ തݕ	ݔ̅ NAND NAND

NAND, again

NOR NOR

NOR, again

Digital Logic Design and Computer Organization with Computer Architecture for Security 8

a1 a0 b1 b0 p3 p2 p1 p0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Inputs Outputs

Canonical Expression
݃ ൌ തݕݔ ൅ ݖݔ̅ ൅ ݖݕݔ

݃ ൌ ̅ݖതݕݔ̅ ൅ ݖതݕݔ̅ ൅ ̅ݖݕݔ ൅ ݖݕݔ

Non-Canonical

Canonical, every term has all the variable names

Min Terms vs. Canonical expression

p2(a1, a0, b1, b0) = ∑(10, 11, 14)

g(x, y, z) = ∑(0, 1, 6, 7)

g(x, y, z) =∑((000)2, (001)2, (110)2, (111)2)

݃ ൌ ̅ݖതݕݔ̅ ൅ ݖതݕݔ̅ ൅ ̅ݖݕݔ ൅ ݖݕݔ

For example,

10
11

14

Digital Logic Design and Computer Organization with Computer Architecture for Security 9

Why minimize logic
expressions

 Eliminates redundancies
 Requires fewer gates
 Fewer inputs per gates
 Less wire
 Less power usage
 Reduces circuit delay

x y z f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

xyzzxy yzx z y xf 

 xyz xf 

)zyxz)(yxz)(y z)(xy(xf 

y)xz)((xf 

How many gates
and types for SOP?

Canonical SOP:
3 NOTs,
four 3-input ANDs,
one 4-input OR.

Minimal SOP:
One NOT,
two 2-input AND,
one 2-input OR

Digital Logic Design and Computer Organization with Computer Architecture for Security 10

Karnaugh map (K-Map)
Layouts

yz: 00 01 11 10

x: 0 0 1 3 2

1 4 5 7 6

z: 0 1

xy: 00 0 1

01 2 3

11 6 7

10 4 5

2 × 4

4 × 2

yz: 00 01 11 10

wx: 00 0 1 3 2

01 4 5 7 6

11 12 13 15 14

10 8 9 11 10

4 × 4

Digital Logic Design and Computer Organization with Computer Architecture for Security 11

SOP and POS K-maps

yz: 00 01 11 10

x: 0 1

1 1 1

yz: 00 01 11 10

x: 0 0 0 0

1 0 0

g(x, y, z) = ∑(2, 6, 7) g(x,	y,	z)	=	Π(0,	1,	3,	4,	5)

SOP POS

Digital Logic Design and Computer Organization with Computer Architecture for Security 12

1/28/2015

3

Minimizing SOP Expressions

yz: 00 01 11 10

x: 0 1 1

1 1 1

Each pair of adjacent terms reduces to a
simplified expression with one less variable.

෍ሺ2,3,6,7ሻ ൌ 	 ݖ̅ݕݔ̅ ൅ ݖݕݔ̅ ൅ ̅ݖݕݔ ൅ ݖݕݔ

ൌ ̅ݖሺݕݔ̅ ൅ ሻݖ ൅ ̅ݖሺݕݔ ൅ ሻ Factor out smaller terms and simplifyݖ

ൌ ݕݔ̅ ൅ Factor out y and simplify ݕݔ

ൌ ݔሺ̅ݕ ൅ 	Simplify																																	ሻݔ

ൌ 		ݕ

Digital Logic Design and Computer Organization with Computer Architecture for Security 13

K-Map Minimization Rules
1) Min/max terms that differ in only one bit are adjacent (an

Implicant). A K-map is assumed to wrap around on both sides.

2) A set of adjacent min/max terms may be combined to form a large
group (a Prime Implicant). The number of terms in each group
must be powers of 2

e.g., 2, 4, 8, or 16 terms.

3) Each group of min/max terms must contain at least a single term
that doesn’t belong to any other group (no redundant groups), an
Essential Prime Implicant

4) All terms must be grouped.

Digital Logic Design and Computer Organization with Computer Architecture for Security 14

More K-map Examples
(no slides)

Digital Logic Design and Computer Organization with Computer Architecture for Security 15

Don’t-Care Signal values
 Example: Displaying BCD numbers

A 7-segment display unit and converter
w x y z fa fb fc fd fe ff fg
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 0 1 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1 1 0 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 1 1 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Inputs Outputs

?
Assuming that w, x, y, and z will not exceed
9, what should we enter in the table for inputs
10 through 15?

Digital Logic Design and Computer Organization with Computer Architecture for Security 16

K-Map with Don’t Cares
f (w, x, y, z) = Σ (1, 9, 14) + Σd (3, 7, 11)

yz: 00 01 11 10

wx: 00 1 d

01 d

11 1

10 1 d

ࢌ ,࢝ ,࢞ ,࢟ ࢠ ൌ ࢠഥ࢞ ൅ തࢠ࢟࢞࢝

Digital Logic Design and Computer Organization with Computer Architecture for Security 17

Logic Minimization Algorithm
 Based on K-Map minimization technique

1. Compare neighboring min/max terms two at a time
(e.g., 0000 with 0001) to produce all Implicants

2. Write the Implicant with a dash (e.g., 000-) for the bit
that changes

3. Repeat steps 1 and 2 for neighboring terms with
matching dashes (e.g., 000- with 100- to get -00-)

4. Prime implicants: Repeat step 3 until all prime
implicants are identified

5. Essential prime implicants: Choose a minimum set
among the prime implicants

Digital Logic Design and Computer Organization with Computer Architecture for Security 18

1/28/2015

4

Minimization Software
f(w, x, y, z) = Σ (0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13)

#Inputs: 4, Outputs: 1
.i 4
.o 1
#Input labels
.ilb w x y z
#output bit label
.ob f
#list of min-terms separated by space and a single output bit separated
by a tab
0 0 0 0 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 0 1 1
#end of list
.e

#Inputs: 4, Outputs: 1
#Input signal labels
#output bit label
#list of min-terms and output
#end of list
.i 4
.o 1
.ilb w x y z
.ob f
.p 3
-10- 1
-0-0 1
0-1- 1
.e

Input File

Output

തࢠഥ࢞ ൅ ࢟ഥ࢝ ൅ ഥ࢟࢞

• Can be used with don’t care inputs tooDigital Logic Design and Computer Organization with Computer Architecture for Security 19

Circuit Timing Diagram
1. Circuits have gate and signal wire delays

2. Gates may have different output signal rise and fall times

3. Circuits have different signal paths from inputs to
outputs

 These may result in signals reaching each gate at different
times

 Can cause unwanted signal change (glitch) at some outputs

 Must wait for the longest signal propagation delay before
the output(s) of a circuit can be used (e.g., stored in a
register)

Digital Logic Design and Computer Organization with Computer Architecture for Security 20

Circuit Fan-In and Fan-Out
 Fan-in: Number of gate inputs

 Fan-out: Number of places a gate output can connect
to

 Buffer gate to increase a gate’s fan-out

Digital Logic Design and Computer Organization with Computer Architecture for Security 21

Other Gates
 Open collector (o.c.) buffer

 Application: Wired-logic with a large fan-in
 E.g., wired-AND or wired-OR logic

 Many application areas

 Tri-state buffer
 Used to create a bus for multiple modules to transmit

data

 Modules not outputting to the bus should be electrically
isolated

Digital Logic Design and Computer Organization with Computer Architecture for Security 22

Small combinational design
examples

 Full-adder circuit

 Multiplexer circuit
 Selects data one from 2 or more inputs

 Decoder circuit
 Translates an input value to a corresponding signal

 Encoder circuit
 Translates an active input signal to a corresponding

signal number

Digital Logic Design and Computer Organization with Computer Architecture for Security 23

Logic Implementation
 ASIC (application specific integrated chip)

 FPGA (Field Programmable Gate Arrays)

Altera FPGA board FPGA internal

Digital Logic Design and Computer Organization with Computer Architecture for Security 24

1/28/2015

5

Design Flow

E.g., Verilog

Translate

Expressions

Map expressions to
on-chip resources

Estimate signal
delays

Verify circuit
description

Verify netlist

Verify timing
requirements

Digital Logic Design and Computer Organization with Computer Architecture for Security 25

Design Entry
 Schematic entry
 Hardware Description Language

 Structural Model
 Use gates
 Use predefined modules

 Behavior model
 Use Boolean expressions, if-else, case (switch),

for-loop, operators “+”, “-”, etc.
 Not all behavioral models are synthesizable
 Applications of non-synthesizable models

 Generate test vectors for synthesizable models
 Investigate computer architecture design ideas

 Hybrid
 Use both structural and behavioral models

Schematic Entry

Digital Logic Design and Computer Organization with Computer Architecture for Security 26

Structural Model Using
Primitive Gates

module full_adder
(
 input a, b, cin,
 output s, cout
); //defines a module’s name and its interface signals

wire out1, out2, out3; //defines local signal names

xor x1(out1, a, b);
xor x2(s, out1, cin);
nand n1(out2, out1, cin);
nand n2(out3, a, b);
nand n3(cout, out2, out3);

endmodule

out1

out2

out3

Digital Logic Design and Computer Organization with Computer Architecture for Security 27

Behavioral Model
module full_adder
(

input a, b, cin,
output reg s, cout

);

always@(a or b or cin)
begin

case ({a, b, cin})
3'b000: begin s = 0; cout = 0; end
3'b001: begin s = 1; cout = 0; end
3'b010: begin s = 1; cout = 0; end
3'b011: begin s = 0; cout = 1; end
3'b100: begin s = 1; cout = 0; end
3'b101: begin s = 0; cout = 1; end
3'b110: begin s = 0; cout = 1; end
3'b111: begin s = 1; cout = 1; end
default:begin s = 0; cout = 0; end
endcase

end
endmodule

Digital Logic Design and Computer Organization with Computer Architecture for Security 28

A summary of Verilog HDL operators

Precedence Operator Type Symbol Example
Highest Unary +, -, !, ~ +a, -a (negate a), !a (logical not), ~a (bidwise not)

Exponential ** a ** 3 (a cubed)
Arithmetic 1 *, /, % a * b (multiply), a / b (divide), a % b (mod)
Arithmetic 2 +, - a + b (add), a - b (subtract)
Shift:

Logical <<, >> a << 2 (shift left twice)
Arithmetic <<<, >>> a >>> 3 (shift right 3 times extending the sign bit)

Relational <, <=, >, >= a >= b (a greater or equal to b)
Equality

Logical ==, != a == b if a is identical to b excluding x and z
Case ===, !== a === b is identical to b including x and z

Bit-wise
Basics &, |, ~, ^ a & b (and), a | b (or), ~a (not), a ̂b (xor)

Combined &~, |~, ~ ,̂ ^~ a &~ b (nand), a |~ b (nor), a ~ ̂b (xnor), a ^~ b (xnor)
Logical &&, ||, ! a &&b (and), a || b (or), !a (not)

Lowest Conditional ?: (a >= b) ? a - b : b - a

Digital Logic Design and Computer Organization with Computer Architecture for Security 29

