Signal Naming Standards

- Active-high signal polarity
- 1 represents signal is active, asserted, enabled
- 0, otherwise
- E.g., signal labeled as x without a pre- or post symbol
- Active-low signal polarity
- 0 represents signal is active, asserted, enabled
- 1, otherwise
- E.g., signal labeled as_x, x, $/ x$, or $x \#$
- With a pre- or post-symbol

In this Chapter

- Small Combinational Circuits
- Fewer inputs (e.g., ≤ 4 inputs)
- Circuits modeled as Truth Tables
- Circuit minimization techniques
- Circuit implementation options
- NANDs only
- NORs only
- Timing diagram
- Signal propagation delay
- Understating signal hazards ("glitches")
- Other types of logic gates
- Design examples
- Introduction to design with HDL

Primitive Logic Gates with Truth Tables

Small Combinational Circuits

- Example: 2-bit unsigned multiplier, $\mathbf{P}=\mathbf{A}$ * \mathbf{B}
- Block diagram and truth table
- Labeling of input and output signals
- Implementation options
- LUT
- Easier, slower, configurable
- Logic circuit
- Faster, less hardware

SOP Expressions

- Based on input values that produce 1 as output
- Each such input is expressed as a product term
- Circuit performs AND-OR logic

- Can be implemented with NAND gates
- DeMargan's theorems convert AND-OR circuit into NAND-only circuit

Theorem 1:
Theorem 2:
$\overline{x y}=\bar{x}+\bar{y}$
$\overline{x+y}=\bar{x} \bar{y}$

POS Expressions

- Based on input values that produce 0 for f (an output) - Same input values produce $\mathbf{1}$ for $\overline{\boldsymbol{f}}$
- Find expression for f by complementing \bar{f}
- Each such input is expressed as a sum term $f=(x+\bar{y})(\bar{x}+y)$
- Circuit performs OR-AND logic \qquad SOP of $\bar{f}=\bar{x} y+x \bar{y}$覀 $f=\overline{x y+x \bar{y}}$
- Can be implemented with NOR gates

DeMargan's theorems convert OR-AND circuit into $f=(\bar{x} y)(x)$ only circuit

- Also can use signal negation with Dual principle

Dual of $\bar{f}=(\bar{x}+y)(x+\bar{y})$

Show mathematically

- NAND implementation

$$
f=\bar{f} \longrightarrow f=\overline{\bar{x} \bar{y}+x y} \quad \underbrace{\text { Theorem }}_{\overline{x+y}=\bar{x} \bar{y}} \quad f=\begin{gathered}
\overline{(\bar{x} \bar{y})(\overline{x y})} \\
\text { NAND NAND }
\end{gathered}
$$

- NOR implementation

\qquad

Canonical Expression

$g=x \bar{y}+\bar{x} z+x y z$
$g=\bar{x} \bar{y} \bar{z}+\bar{x} \bar{y} z+x y \bar{z}+x y z$

Non-Canonical
Canonical, every term has all the variable names

Min Terms vs. Canonical expression
For example, $g(x, y, z)=\sum(0,1,6,7)$
$g(x, y, z)=\sum((000) 2,(001) 2,(110) 2,(111) 2)$
$g=\bar{x} \bar{y} \bar{z}+\bar{x} \bar{y} z+x y \bar{z}+x y z$

Why minimize logic expressions

- Eliminates redundancies
- Requires fewer gates
- Fewer inputs per gates
- Less wire
- Less power usage
- Reduces circuit delay

How many gates and types for SOP?
Canonical SOP:
four 3-input ANDs,
one 4-input OR.
one 4-input OR.
Minimal SOP:
One NOT,
,
One Noit
two 2 -input AND,
and
one 2-input OR

Karnaugh map (K-Map)

Layouts

$y z:$	00	01	11	10
		10		

	2×4			
	4	5	7	6

4×2 xy:

$z:$	0	1
	0	0
0	1	
01	2	3
11	6	7
10	4	5

$y z:$						00	01	11	10
$w x:$	00	0	1	3					

SOP and POS K-maps

Minimizing SOP Expressions

Each pair of adjacent terms reduces to a simplified expression with one less variable.

Don't-Care Signal values

- Example: Displaying BCD numbers

K-Map Minimization Rules

1) Min/max terms that differ in only one bit are adjacent (an Implicant). A K-map is assumed to wrap around on both sides.
2) A set of adjacent $\mathrm{min} / \mathrm{max}$ terms may be combined to form a large group (a Prime Implicant). The number of terms in each group must be powers of 2

$$
\text { e.g., } 2,4,8 \text {, or } 16 \text { terms. }
$$

3) Each group of min/max terms must contain at least a single term that doesn't belong to any other group (no redundant groups), an Essential Prime Implicant
4) All terms must be grouped.

K-Map with Don’t Cares

$f(w, x, y, z)=\Sigma(1,9,14)+\Sigma_{d}(3,7,11)$

$$
f(w, x, y, z)=\bar{x} z+w x y \bar{z}
$$

Logic Minimization Algorithm

- Based on K-Map minimization technique

1. Compare neighboring min/max terms two at a time (e.g., 0000 with 0001) to produce all Implicants
2. Write the Implicant with a dash (e.g., 000-) for the bit that changes
3. Repeat steps $\mathbf{1}$ and $\mathbf{2}$ for neighboring terms with matching dashes (e.g., 000- with 100 - to get $\mathbf{- 0 0 -}$)
4. Prime implicants: Repeat step $\mathbf{3}$ until all prime implicants are identified
5. Essential prime implicants: Choose a minimum set among the prime implicants

Minimization Software

$f(w, x, y, z)=\Sigma(0,2,3,4,5,6,7,8,10,12,13)$

- Can be used with don't care inputs too

Circuit Timing Diagram

1. Circuits have gate and signal wire delays
2. Gates may have different output signal rise and fall times
3. Circuits have different signal paths from inputs to outputs

- These may result in signals reaching each gate at different times
- Can cause unwanted signal change (glitch) at some outputs
- Must wait for the longest signal propagation delay before the output(s) of a circuit can be used (e.g., stored in a register)

Other Gates

- Open collector (o.c.) buffer
- Application: Wired-logic with a large fan-in
- E.g., wired-AND or wired-OR logic
- Many application areas
- Tri-state buffer
- Used to create a bus for multiple modules to transmit data
- Modules not outputting to the bus should be electrically isolated

Small combinational design examples

- Full-adder circuit
- Multiplexer circuit
- Selects data one from 2 or more inputs
- Decoder circuit
- Translates an input value to a corresponding signal
- Encoder circuit
- Translates an active input signal to a corresponding signal number

