1/28/2015

Signal Naming Standards

* Active-high signal polarity

C h a pt e r 2 ¢ 1 represents signal is active, asserted, enabled

¢ 0, otherwise
¢ E.g., signal labeled as x without a pre- or post symbol

COMBINATIONAL CIRCUITS * Active-low signal polarity
SMALL DESIGNS ¢ 0 represents signal is active, asserted, enabled
¢ 1, otherwise
¢ E.g., signal labeled as _x, x’, /x, or x# - :

. y
0 1
« With a pre- or post-symbol ——
o

~Primitive Logic Gates wit
In this Chapter Truth Tables

¢ Small Combinational Circuits NoT AND oR
¢ Fewer inputs (e.g., < 4 inputs) %>k e ' '
¢ Circuits modeled as Truth Tables Tﬁ bl LT
o Circuit minimization techniques = . =
* Circuit implementation options [W .
+ NAND:s onl = = =
R = e)
 Timing diagram s o p
« Signal propagation delay
« Understating signal hazards (“glitches”)
© Other types of logic gates
* Design examples o
¢ Introduction to design with HDL o

Digal Logi Design and Computer Orgaizaton with Computer Archictur fo Sesuity 2 Digial Logi Design and Computer Orgaizaton with Computer Archicetur fo Sesuity 5

Small Combinational Circuits SOP Expressions

* Example: 2-bit unsigned et Arsiti e * Based on input values that produce 1 as output : f
multiplier, P=A* B Iﬁ e Each such input is expressed as a product term | | |:
* Block diagram and truth table p_m;m . ¢ Circuit performs AND-OR logic
o Labeling of input and output ey -

. D I, reoreo
signals W

=
* Implementation options S oTE 5 5 e Can be implemented with NAND gates
=
o LUT s 9 ialod oo * DeMargan’s theorems convert AND-OR circuit into
« Easier, slower, configurable S N NAND-only circuit
e e -
¢ Logic circuit T Theorem 1: T =747 DS
« Faster, less hardware 8 5 e R Theorem 2; Xty=1iy ¥ .
e
Digital Logic Design and Computer Organization with Computer Architecture for Security < Digital Logic Design and Computer Organization with Computer Architecture for Security 6

POS Expressions

* Based on input values that produce 0 for f(an output)
o Same input values produce 1 for f
* Find expression for f by compl ting f
¢ Each such input is expressed as a sum term
FEEEIE D)
¢ Circuit performs OR-AND logic -

SOPof f=Xy+x¥
bl
EU —xy+xy

¢ Can be implemented with NOR gates)
© DeMargan’s theorems convert OR-AND circuit into N(SI{
only circuit

¢ Also can use signal negation with Dual principle
Dualof f = (%+y)(x+¥%) v

Digital Logic Design and Computer Organizaton with Computer Architeeture for Sccurity

" Why minimize fogic

Show mathematically

¢ NAND implementation

Theorem 2
f=f wmmp f-F3+xy = f=ENEY
xX¥ty=xy NAND NAND

NAND, again
* NOR implementation

f=@+PGE+Y) =GFNGETY =G+N+E+Y)
NOR NOR

NOR, again

1/28/2015

expressions

¢ Eliminates redundancies How many gates

* Requires fewer gates and types for SOE
Canonical SOP:

* Fewer inputs per gates =

o Less wire one 4-input OR.
Minimal SOP:

© Less power usage OneNOT,

. 5 two 2-input AND,
* Reduces circuit delay one 2-input OR

Inglement wih NAND gales

Canonical SOP: f =7 yz + x)z + 32 + 97

Minimal SOP: £ =1z + 1y %

Implement with NOR gates
Canonical POS: f = (x + p+ z)fs + p+2)(X+ p+2)(X+ y+2) f

Minimal POS
Digal Logic Design and Computer Organizaton with Computer Archite

a5+
Security 10

Canonical Expression

xy + Xz + xyz Non-Canonical

g:=
g =XyzZ+Xyz+xyZ+xyz Canonical, every term has all the variable names

= = 3 s | oupus
Min Terms vs. Canonical expression al a0 b1 b0|p3 p2 pL po.

(O L L B S FC

0 0 0 1]/0 0 0 o

Forexample, g(X, ¥,2) = 2.(0, 1,6, 7) oiotirejo ool

oitlololo ololn

(o] B O

G 0] B) 0

g(x, . z) =Y((000)2, (001)2, (110)2, (111)2) (B 5 S B i

Tiofaololo ofloin

ool T|o oD

S = 10 ‘201 0fo oo o

g =Xyz+Xyz+xyz+xyz 1 EEECNENE | o B 1 o

e et | O o B

A S S | e

1+ EEENENND (o B : o

U S G

p2(al, a0, b1, b0) = ¥(10, 11, 14,

-

Digital Logic Design and Computer Organization with Computer Architecture for Security 3

“Karnaugh map
Layouts

z 0 L S
xy: 00 O d, yz:”00 01 "11 "10
mm o1l 2 3 w00 0] 1]3]2
r @l 4 | 5| % 6
- 1) 6 7 £ 11 12 | 13| 15 | 14
10| 4 5 r 100 8| 9 f11]10

SOP and POS K-maps

yzZlooJo1]11] 10 iz 00RO 1515 E10)
x: 0 it % 0 © 0 0
r
1] 1] 0] 0
8,52 =%2,6,7) 9(xy,2)=1(0,1,3 4,5)
SOP POS

Digital Logic Design and Computer Organization with Computer Architecture for Security 12

Minimizing SOP Expressions

2(2,3,5.7) = XyZ+Ryz+xyZ+ayz

=%y(z+2) +xy(Z+2) Factor out smaller terms and simplify

=%y +xy Factor out y and simplify
=y(E+x) Simplify 0 1| 1
— v

! at at

Each pair of adjacent terms reduces to a
simplified expression with one less variable.

Digital Logic Design and Computer Organizaton with Computer Architeeture for Sccurity 13

K-Map Minimization Rules

1) Min/max terms that differ in only one bit are adjacent (an
Implicant). A K-map is assumed to wrap around on both sides.

2) A set of adjacent min/max terms may be combined to form a large
group (a Prime Implicant). The number of terms in each group
must be powers of 2

e.g.,2,4,8, or 16 terms.

3) Each group of min/max terms must contain at least a single term
that doesn’t belong to any other group (no redundant groups), an
Essential Prime Implicant

4) All terms must be grouped.

1/28/2015

Don’t-Care Signal values
¢ Example: Displaying BCD numbers
— s A 7-segment display unit and converter
w_x y z |fa fo fc_fd_fe ff fg =
) DEE] 3¢ I x I 1 1 7-5DUY
oo olifolilifolofolo .
@ ® 1 G 4 @ 1 @ % 3 B e
 EE SRR R R R BT b eI Ib
] 170 o o E5 X I 1 0 EE w fc
(00 e O e e o G e B L x —>»| 7-Segment [, 1e !
O 88 Glo e angaa y —>! Converter | o 7|
71 5T TSR SR U0 v WA e Rl PO N M v | Ew? f c
P S O SO e e e e i
53 [EE 1 S 1 1 0 1 ik & I ——
b8] i o d
ito it
B B 9}
P s “
iTiTiTo
TTiTiT1
Digital Logic Design and Computer Organization with Computer Architecture for Security 16

More K-map Examples
(no slides)

Digital Logic Design and Computer Organizaton with Computer Architeeture for Sccurity 15

K-Map with Don’t Cares

S x0,9) =2 (1,9 14) + 2,3, 7, 11)

vzl 0001 [F11 /10

wx: 00 l]d

@l d

. @
10 1 E'\

fw,x,y,2) =%z + wxyz

Logic Minimization Algorithm
* Based on K-Map minimization technique

1. Compare neighboring min/max terms two at a time
(e.g., 0000 with 0001) to produce all Implicants

2. Write the Implicant with a dash (e.g., 000-) for the bit
that changes

3. Repeat steps 1 and 2 for neighboring terms with
matching dashes (e.g., 000- with 100- to get -00-)

4. Prime implicants: Repeat step 3 until all prime
implicants are identified

5. Essential prime implicants: Choose a minimum set
among the prime implicants

Digital Logic Design and Computer Organization with Computer Architecture for Security 18

; T ——— =
" Minimization Software

fmx,,29=2(0,2,3,4,5,6,7,8, 10, 12, 13)

Input File
#flnputs: 4, Outputs: 1
v Output
ol #nputs: 4, Outputs: 1
#Input labels. #Input signal labels
ilbwxyz #output bit label
#output bit label #list of min-terms and output
obf _ #end of list
#list of min-term: ited by space and a ! tp! i4
by atab w0l
g g tlw g : # dlbwxyz
obf
0011 1 .: 3
0100 1 -10-1
0101 1 -0-01
0110 1 0-1-1
0111 1 K9
1000 1
1010 1
1100 1
1101 1
shend of lst
Ja XZ +wy +xy
a 5 a
..Canbe.used. with.don’t.care inputs too 9

Circuit Timing Diagram

Circuits have gate and signal wire delays

Gates may have different output signal rise and fall times

W N -

Circuits have different signal paths from inputs to
outputs

¢ These may result in signals reaching each gate at different
times

¢ Can cause unwanted signal change (glitch) at some outputs

* Must wait for the longest signal propagation delay before
the output(s) of a circuit can be used (e.g., stored in a
register)

Digal Logi Design and Computer Orgaizaton with Computer Archictur fo Sesuity 20

1/28/2015

Other Gates

¢ Open collector (o.c.) buffer
o Application: Wired-logic with a large fan-in
« E.g., wired-AND or wired-OR logic
* Many application areas
¢ Tri-state buffer

¢ Used to create a bus for multiple modules to transmit
data

¢ Modules not outputting to the bus should be electrically
isolated

" 4{_ o o 1
~ -
()

“~Small combinational design

Circuit Fan-In and Fan-Out

* Fan-in: Number of gate inputs

* Fan-out: Number of places a gate output can connect
to

* Buffer gate to increase a gate’s fan-out

< o n ou

v

=

Ppe—
Digital Logic Design and Computer Organizaton with Computer Archieeture for Sccurity

examples

¢ Full-adder circuit
© Multiplexer circuit
¢ Selects data one from 2 or more inputs
* Decoder circuit
¢ Translates an input value to a corresponding signal
¢ Encoder circuit

¢ Translates an active input signal to a corresponding
signal number

Digial Logi Design and Computer Organizaton with Computer Archiceur for Sccuity 23

Logic Implementation

* ASIC (application specific integrated chip)
* FPGA (Field Programmable Gate Arrays)

Altera FPGA board FPGA internal

Digial Logic Design an

mpute Organizaton with Computer Architecture for Sccurity

Design Flow

\;‘ Verify circuit
R description

L

E.g., Verilog

Translate

Expressions
Map expressions to
on-chip resources T

\L‘ Verify netlist

Estimate signal
delays

ey Verify timing
Semaion %
requirements

Digital Logic Design and Computer Organization with Computer Architecture for Sccurty

Design E]T)/

* Schematic entry Schematic Entry

¢ Hardware Description Language
¢ Structural Model
« Use gates
« Use predefined modules
* Behavior model
= Use Boolean expressions, if-else, case (switch),
for-loop, operators “+”, “-”, etc.
« Not all behavioral models are synthesizable
« Applications of non-synthesizable models
« Generate test vectors for synthesizable models
- Investigate computer architecture design ideas
¢ Hybrid
« Use both structural and behavioral models

I%; Blxs]

Digal Logi Design and Computer Orgaizaton with Computer Archictur fo Sesuity 26

Behavioral Model

module full_adder
(

input a, b, cin,
output reg s, cout

)

always(@(a or b or cin)

begin
case ({a, b, cin})
3'b000:
3'b001:
3'b010:
3'b011:
3'b100:
3'b101:
3'b110:
3bl11: 5
default:begin s = 0; cout = 0; end
endcase

end

endmodule

Digital Logic Design and Computer Organization with Computer Architecture for Security 28

1/28/2015

ruct T,
Primitive Gates

module full_adder

input a, b, cin,

output s, cout
); lldefines a module’s name and its interface signals
wire outl, out2, out3; //defines local signal names

xor xl(outl, a, b);
Xxor X2(s, outd, cin);

nand nl(out2, outl, cin); N ﬁ:)i} outl
nand n2(out3, a, b); T
nand n3(cout, out2, out3);) s
o
endmodule S
out3
Digital Logic Design and Computer Organization with Computer Architecture for Security 27

A summary of Verilog HDL operators

Operator Type Symbol Example
Highest Unary A +a, -a (negate a), 'a (logical not), ~a (bidwise not)
Exponential = a** 3 (a cubed)
Arithmetic 1 *, /, % a* b (multiply), a/ b (divide), a % b (mod)
Arithmetic 2 +, - a+ b (add), a - b (subtract)
Shift:
Logical|<<, >> a << 2 (shift left twice)
Arithmetic|<<<, >>> a >>> 3 (shift right 3 times extending the sign bit)
Relational <, <=,>,>= [a>=b (agreater or equal to b)
Equality
Logical b if a is identical to b excluding x and z
Case a===bis identical to b including x and z
Bit-wise
Basics|&, |, ~, * a &b (and), a| b (or), ~a (not), a b (xor)
Combined| &, |~, ~", "~ |a&~ b (nand), a |~ b (nor), a ~*b (xnor), a "~ b (xnor)
Logical 88, ||, ! a&&b (and), a || b (or), 'a (not)
Lowest Conditional 2 (@a>=h)?a-b:b-a

Digial Logie Design and Computer Organizaton with Computer Architecture for Sccurity 2

