
1/28/2015

1

COMBINATIONAL CIRCUITS

SMALL DESIGNS

Digital Logic Design and Computer Organization with Computer Architecture for Security 1

In this Chapter
 Small Combinational Circuits

 Fewer inputs (e.g., ≤ 4 inputs)
 Circuits modeled as Truth Tables
 Circuit minimization techniques

 Circuit implementation options
 NANDs only
 NORs only

 Timing diagram
 Signal propagation delay
 Understating signal hazards (“glitches”)

 Other types of logic gates
 Design examples
 Introduction to design with HDL

Digital Logic Design and Computer Organization with Computer Architecture for Security 2

Small Combinational Circuits
 Example: 2-bit unsigned 

multiplier, P = A * B

 Block diagram and truth table
 Labeling of input and output 

signals

 Implementation options
 LUT

 Easier, slower, configurable

 Logic circuit
 Faster, less hardware

a1 a0 b1 b0 p3 p2 p1 p0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Inputs Outputs

Digital Logic Design and Computer Organization with Computer Architecture for Security 3

Signal Naming Standards
 Active-high signal polarity

 1 represents signal is active, asserted, enabled

 0, otherwise

 E.g., signal labeled as x without a pre- or post symbol

 Active-low signal polarity
 0 represents signal is active, asserted, enabled

 1, otherwise 

 E.g., signal labeled as _x, x’, /x, or x#
 With a pre- or post-symbol

_c x y

0 0 1
0 1 0
1 0 0
1 1 1

Digital Logic Design and Computer Organization with Computer Architecture for Security 4

Primitive Logic Gates with 
Truth Tables

x f
0 1
1 0

x y f
0 0 0
0 1 0
1 0 0
1 1 1

x y f
0 0 0
0 1 1
1 0 1
1 1 1

x y f
0 0 1
0 1 1
1 0 1
1 1 0

x y f
0 0 1
0 1 0
1 0 0
1 1 0

x y f
0 0 0
0 1 1
1 0 1
1 1 0

x y f
0 0 1
0 1 0
1 0 0
1 1 1

Digital Logic Design and Computer Organization with Computer Architecture for Security 5

SOP Expressions
 Based on input values that produce 1 as output
 Each such input is expressed as a product term
 Circuit performs AND-OR logic

 Can be implemented with NAND gates

 DeMargan’s theorems convert  AND-OR circuit into 
NAND-only circuit 

̅ 	 	

sum

product

Digital Logic Design and Computer Organization with Computer Architecture for Security 6



1/28/2015

2

POS Expressions
 Based on input values that produce 0 for f (an output)

 Same input values produce 1 for 
 Find expression for f by complementing 
 Each such input is expressed as a sum term

 Circuit performs OR-AND logic

 Can be implemented with NOR gates
 DeMargan’s theorems convert OR-AND circuit into NOR-

only circuit 
 Also can use signal negation with Dual principle

SOP of ̅ ̅ 	 	

	 ̅ 	 	

̅ 	 	

̅ 	

Digital Logic Design and Computer Organization with Computer Architecture for Security 7

Show mathematically
 NAND implementation

 NOR implementation

Theorem 2

̅ 	 NAND NAND

NAND, again

NOR NOR

NOR, again

Digital Logic Design and Computer Organization with Computer Architecture for Security 8

a1 a0 b1 b0 p3 p2 p1 p0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Inputs Outputs

Canonical Expression
̅

̅ ̅ ̅ ̅

Non-Canonical

Canonical, every term has all the variable names

Min Terms vs. Canonical expression

p2(a1, a0, b1, b0) = ∑(10, 11, 14)

g(x, y, z) = ∑(0, 1, 6, 7)

g(x, y, z) =∑((000)2, (001)2, (110)2, (111)2)

̅ ̅ ̅ ̅

For example,

10
11

14

Digital Logic Design and Computer Organization with Computer Architecture for Security 9

Why minimize logic 
expressions

 Eliminates redundancies
 Requires fewer gates
 Fewer inputs per gates
 Less wire
 Less power usage
 Reduces circuit delay

x y z f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

xyzzxy yzx z y xf 

 xyz xf 

)zyxz)(yxz)(y z)(xy(xf 

y)xz)((xf 

How many gates 
and types for SOP?

Canonical SOP: 
3 NOTs, 
four 3-input ANDs,
one 4-input OR.

Minimal SOP: 
One NOT, 
two 2-input AND, 
one 2-input OR

Digital Logic Design and Computer Organization with Computer Architecture for Security 10

Karnaugh map (K-Map) 
Layouts

yz: 00 01 11 10

x:  0 0 1 3 2

1 4 5 7 6

z: 0 1

xy:   00 0 1

01 2 3

11 6 7

10 4 5

2 × 4

4 × 2

yz: 00 01 11 10

wx:   00 0 1 3 2

01 4 5 7 6

11 12 13 15 14

10 8 9 11 10

4 × 4

Digital Logic Design and Computer Organization with Computer Architecture for Security 11

SOP and POS K-maps

yz: 00 01 11 10

x:  0 1

1 1 1

yz: 00 01 11 10

x:  0 0 0 0

1 0 0

g(x, y, z) = ∑(2, 6, 7) g(x,	y,	z)	=	Π(0,	1,	3,	4,	5)

SOP POS

Digital Logic Design and Computer Organization with Computer Architecture for Security 12



1/28/2015

3

Minimizing SOP Expressions

yz: 00 01 11 10

x:  0 1 1

1 1 1

Each pair of adjacent terms reduces to a 
simplified expression with one less variable.

2,3,6,7 	 ̅ ̅ ̅ ̅  

̅ ̅ ̅       Factor out smaller terms and simplify 

̅                               Factor out y and simplify 

̅ 																																	Simplify	

		

 

Digital Logic Design and Computer Organization with Computer Architecture for Security 13

K-Map Minimization Rules
1) Min/max terms that differ in only one bit are adjacent (an

Implicant). A K-map is assumed to wrap around on both sides.

2) A set of adjacent min/max terms may be combined to form a large
group (a Prime Implicant). The number of terms in each group
must be powers of 2

e.g., 2, 4, 8, or 16 terms.

3) Each group of min/max terms must contain at least a single term
that doesn’t belong to any other group (no redundant groups), an
Essential Prime Implicant

4) All terms must be grouped.

Digital Logic Design and Computer Organization with Computer Architecture for Security 14

More K-map Examples
(no slides)

Digital Logic Design and Computer Organization with Computer Architecture for Security 15

Don’t-Care Signal values
 Example: Displaying BCD numbers

A 7-segment display unit and converter
w x y z fa fb fc fd fe ff fg
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 0 1 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1 1 0 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 1 1 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Inputs Outputs

?
Assuming that w, x, y, and z will not exceed 
9, what should we enter in the table for inputs 
10 through 15?

Digital Logic Design and Computer Organization with Computer Architecture for Security 16

K-Map with Don’t Cares
f (w, x, y, z) = Σ (1, 9, 14) + Σd (3, 7, 11)

yz: 00 01 11 10

wx:   00 1 d

01 d

11 1

10 1 d

, , ,

Digital Logic Design and Computer Organization with Computer Architecture for Security 17

Logic Minimization Algorithm
 Based on K-Map minimization technique

1. Compare neighboring min/max terms two at a time 
(e.g., 0000 with 0001) to produce all Implicants

2. Write the Implicant with a dash (e.g., 000-) for the bit 
that changes

3. Repeat steps 1 and 2 for neighboring terms with 
matching dashes (e.g., 000- with 100- to get -00-)

4. Prime implicants: Repeat step 3 until all prime 
implicants are identified

5. Essential prime implicants:  Choose a minimum set 
among the prime implicants

Digital Logic Design and Computer Organization with Computer Architecture for Security 18



1/28/2015

4

Minimization Software
f(w, x, y, z) = Σ (0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13)

#Inputs: 4, Outputs: 1
.i 4
.o 1
#Input labels
.ilb w x y z
#output bit label
.ob f
#list of min-terms separated by space and a single output bit separated 
by a tab
0 0 0 0 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 0 1 1
#end of list
.e

#Inputs: 4, Outputs: 1
#Input signal labels
#output bit label
#list of min-terms and output
#end of list
.i 4
.o 1
.ilb w x y z
.ob f
.p 3
-10- 1
-0-0 1
0-1- 1
.e

Input File

Output

• Can be used with don’t care inputs tooDigital Logic Design and Computer Organization with Computer Architecture for Security 19

Circuit Timing Diagram
1. Circuits have gate and signal wire delays

2. Gates may have different output signal rise and fall times

3. Circuits have different signal paths from inputs to 
outputs

 These may result in signals reaching each gate at different 
times

 Can cause unwanted signal change (glitch) at some outputs

 Must wait for the longest signal propagation delay before 
the output(s) of a circuit can be used (e.g., stored in a 
register)

Digital Logic Design and Computer Organization with Computer Architecture for Security 20

Circuit Fan-In and Fan-Out
 Fan-in: Number of gate inputs

 Fan-out: Number of places a gate output can connect 
to

 Buffer gate to increase a gate’s fan-out

Digital Logic Design and Computer Organization with Computer Architecture for Security 21

Other Gates
 Open collector (o.c.) buffer

 Application: Wired-logic with a large fan-in
 E.g., wired-AND or wired-OR logic

 Many application areas

 Tri-state buffer
 Used to create a bus for multiple modules to transmit 

data

 Modules not outputting to the bus should be electrically 
isolated

Digital Logic Design and Computer Organization with Computer Architecture for Security 22

Small combinational design 
examples

 Full-adder circuit

 Multiplexer circuit
 Selects data one from 2 or more inputs

 Decoder circuit
 Translates an input value to a corresponding signal

 Encoder circuit
 Translates an active input signal to a corresponding 

signal number

Digital Logic Design and Computer Organization with Computer Architecture for Security 23

Logic Implementation
 ASIC (application specific integrated chip)

 FPGA (Field Programmable Gate Arrays)

Altera FPGA board FPGA internal

Digital Logic Design and Computer Organization with Computer Architecture for Security 24



1/28/2015

5

Design Flow

E.g., Verilog

Translate

Expressions

Map expressions to 
on-chip resources

Estimate signal 
delays

Verify circuit 
description

Verify netlist

Verify timing 
requirements

Digital Logic Design and Computer Organization with Computer Architecture for Security 25

Design Entry
 Schematic entry
 Hardware Description Language

 Structural Model
 Use gates
 Use predefined modules

 Behavior model
 Use Boolean expressions, if-else, case (switch), 

for-loop, operators “+”, “-”, etc.
 Not all behavioral models are synthesizable
 Applications of non-synthesizable models

 Generate test vectors for synthesizable models
 Investigate computer architecture design ideas

 Hybrid
 Use both structural and behavioral models

Schematic Entry

Digital Logic Design and Computer Organization with Computer Architecture for Security 26

Structural Model Using 
Primitive Gates

module full_adder 
( 
 input a, b, cin,  
 output s, cout 
); //defines a module’s name and its interface signals 
 
wire out1, out2, out3;  //defines local signal names 
 
xor x1(out1, a, b); 
xor x2(s, out1, cin); 
nand n1(out2, out1, cin); 
nand n2(out3, a, b); 
nand n3(cout, out2, out3); 
 
endmodule 

out1

out2

out3

Digital Logic Design and Computer Organization with Computer Architecture for Security 27

Behavioral Model
module full_adder
(

input a, b, cin,
output reg s, cout

);

always@(a or b or cin)
begin

case ({a, b, cin})
3'b000: begin s = 0; cout = 0; end
3'b001: begin s = 1; cout = 0; end
3'b010: begin s = 1; cout = 0; end
3'b011: begin s = 0; cout = 1; end
3'b100: begin s = 1; cout = 0; end
3'b101: begin s = 0; cout = 1; end
3'b110: begin s = 0; cout = 1; end
3'b111: begin s = 1; cout = 1; end
default:begin s = 0; cout = 0; end
endcase

end
endmodule

Digital Logic Design and Computer Organization with Computer Architecture for Security 28

A summary of Verilog HDL operators

Precedence Operator Type Symbol Example
Highest Unary  +, -, !, ~  +a, -a (negate a), !a (logical not), ~a (bidwise not)

Exponential ** a ** 3 (a cubed)
Arithmetic 1 *, /, % a * b (multiply), a / b (divide), a % b (mod)
Arithmetic 2 +, - a + b (add), a - b (subtract)
Shift:

Logical <<, >> a << 2 (shift left twice)
Arithmetic <<<, >>> a >>> 3 (shift right 3 times extending the sign bit)

Relational <, <=, >, >= a >= b (a greater or equal to b)
Equality

Logical  ==, != a == b if a is identical to b excluding x and z
Case  ===, !== a === b is identical to b including x and z

Bit-wise
Basics &, |, ~, ^ a & b (and), a | b (or), ~a (not), a  ̂b (xor)

Combined  &~, |~, ~ ,̂ ^~ a &~ b (nand), a |~ b (nor), a ~  ̂b (xnor), a ^~ b (xnor)
Logical &&, ||, ! a &&b (and), a || b (or), !a (not)

Lowest Conditional ?: (a >= b) ? a - b : b - a

Digital Logic Design and Computer Organization with Computer Architecture for Security 29


