Auto-allocating arrays

Often you need to allocate memory.

{
int x[101];

x[5] = 3;

¥

~ No function call: fast and convenient.
~ Runtime stack limited to 2-8KB total. Careful!



Manually allocating arrays

{
int *xy = malloc(10 * sizeof(int));
yLls] = 3;
free(y);

¥

~ Function call. Remember to free when done.
~ Any size allowed. Exists after scope exits.
~ Array notation okay applied to pointer.



Array/pointer interchangeable

int x[101;
int *y = malloc(10 * sizeof(int));
x[1]

0
d5;
y[1] = 5;

In both cases above, x and y should be thought of as
holding an address.

Array notation [| can be applied to both.

Neither has a "length" function.



Example: Reverse array

int reverse(int int {
1t (elems <= 100) {
int t[100];

for (int i=0; i<elems; i++)
tli] = alelems-i-11];
for (int i=0; i<elems; i++)

ali] = t[il];
return elems;
1 else
return 0;

¥

Crashes if not enough stack.



Example: Safer reverse array

int reverse(int int {
int *t = malloc(elems * sizeof(int));
1t (t = NULL) {
for (int 1=0; i<elems; 1++)
tl1] = alelems-1-1];
for (int 1=0; i<elems; 1i++)

ali] = t[i];
free(t);
return elems;
} else
return 0;

}

Allocation more expensive.



Example: Better reverse array

int reverse(int int {
for (int 1=0; i<elems/2; i++) {
int t = alil;

ali] = alelems-1-11];
alelems-1-1] = t;

¥

return elems;

¥

Best: Robust and O(1) space.



Obtaining memory addresses

Sometimes you want the address of an array element.
x+1 evaluates to the address of x[i].

"‘pointer arithmetic" adds as many bytes to x as are
needed to get to x|[i].

int x[107;
int *y = malloc(10 * sizeof(int));
Nt *p = x+5;
int *p = y+5;



