Regular Expressions

- A regular expression (RE) represents a set of strings. - All the strings share a pattern specified by the RE. - Think of a (RE) as a way to express a pattern.

Example:
$a b(a b) *(a+b)$ is "ab followed by any number of ab's followed by a or b".

Patterns: concatenation

When thinking of patterns concatenation means sequence.

RE: abc matches a followed by b followed by c
RE: $R_{1} R_{2}$ matches R_{1} string followed by R_{2} string
Examples:
(a*) (b*) = a*b* = (any a's) followed by (any b's) (hat) + (hot) $=$ hat+hot matches "hat" or "hot"

Patterns: +

When thinking of patterns + means "or"
RE: a+b matches "a" or "b"
RE: $R_{1}+R_{2}$ matches string from R_{1} or string from R_{2}
Examples:
$(a *)+(b *)=a *+b *$ matches string of all a's or all b's $h(a+o) t$ matches "hat" or "hot" (parens required here)

Patterns: *

When thinking of patterns * means "any number of"
RE: a* matches any number of a's (incl 0)
RE: R^{*} matches any sequence of strings from R
Examples:
(ab)* matches ab repeated any number of times
$\lambda, a b, a b a b, a b a b a b, \ldots$
(ab*)* matches $a b *$ repeated any number of times
$\lambda, a, a b, a b b, a b b|a b, a| a b|a b| a b, a|a| a|a| a, \ldots$

Common Patterns: (a+b)*

(a+b)* = every possible string over \{a,b\}
$a(a+b) *=$ is every possible string starting with a
Can be used with bigger building blocks...
$((a+b)(a+b)) *$ matches (a or b)(a or b) any number.
$\lambda, a a, b a, a b|a b, a a| b b \mid a a, \ldots$
All the strings of length a multiple of 2

Common Patterns: $\mathbf{R + \lambda}$

To say something is optional use or with empty string.
$R+\lambda$ matches string from R or an empty string.
Example:
($s+\lambda$)pot matches "s" or empty followed by "pot" spot, pot

Common Patterns: R1 + R2

Break big problem into smaller ones.
If $L=A \cup B$ then make REs for A and B instead.
Strings beginning and ending with same character $\{a, b\}$ (beginning/ending a) \cup (beginning/ending b) (a (a+b)* a) + (b (a+b)* b)

Use + to add missing elements
(a (a+b)* a) + (b (a+b)* b) + a + b

Design method

1. Think in patterns
(any char)(any string)(same char) $a($ any string) $a+b($ any string $) b$ $a(a+b) * a+b(a+b) * b$
2. Try to "break" your RE Find a string it produces that it shouldn't Find a string it doesn't produce that it should This is how I grade quizzes

Example: $\left\{w \in\{0,1\}^{*} \mid w\right.$ has exactly one 1$\}$

Pattern: (any number of 0) 1 (any number of 0)
RE: 0* 1 0*
What does it generate?
$\{0\}^{*}\{1\}\{0\}^{*}$
$\{\lambda, 0,00,000, \ldots\}\{1\}\{\lambda, 0,00,000, \ldots\}$
$\{1,01,10,001,010,001,0001,0010,0100,1000, \ldots\}$
Fits description!

Example: $\left\{w \in\{0,1\}^{*} \mid w\right.$ has at least one 1$\}$

Pattern: (any string) 1 (any string)
RE: ($0+1$)* 1 ($0+1$)*
What does it generate?
$\{0,1\}^{*}\{1\}\{0,1\}^{*}$
$\{\lambda, 0,1,00,01,10,11, \ldots\}\{1\}\{\lambda, 0,1,00,01,10,11, \ldots\}$
$\{1,01,10,11,001,010,011,100,101,111, \ldots\}$
Useful to think in length order.
Write all length 1, then length 2, then length 3, ...

Example: $\left\{w \in\{0,1\}^{*} \mid w\right.$ has even length $\}$

Even definition: n even iff $n=2 k$ for some integer k.
Pattern: (2 characters) any number of times
RE: $(00+01+10+11) *=((0+1)(0+1)) *$

Example: $\left\{w \in\{0,1\}^{*} \mid w\right.$ is not length 3$\}$

It's harder to express what's missing in a pattern.
Break into subproblems.
Pattern:
$(\operatorname{len} 0)+(\operatorname{len} 1)+(\operatorname{len} 2)+(\operatorname{len} 4)+(\operatorname{len} 5)+\ldots$
$(\operatorname{len} 0)+(\operatorname{len} 1)+(\operatorname{len} 2)+(\operatorname{len} \geq 4)$
RE:
$\lambda+(0+1)+(0+1)(0+1)+(0+1)(0+1)(0+1)(0+1)(0+1) *$

