
Regular Expressions

— A regular expression (RE) represents a set of strings.

— All the strings share a pattern specified by the RE.

— Think of a (RE) as a way to express a pattern.

Example:

ab(ab)*(a+b) is "ab followed by any number of ab's
followed by a or b".

Patterns: concatenation

When thinking of patterns concatenation means
sequence.

RE: abc matches a followed by b followed by c

RE: matches string followed by string

Examples:
(a*)(b*) = a*b* = (any a's) followed by (any b's)
(hat)+(hot) = hat+hot matches "hat" or "hot"

Patterns: +

When thinking of patterns + means "or"

RE: a+b matches "a" or "b"

RE: matches string from or string from

Examples:
(a*)+(b*) = a*+b* matches string of all a's or all b's
h(a+o)t matches "hat" or "hot" (parens required here)

Patterns: *

When thinking of patterns * means "any number of"

RE: a* matches any number of a's (incl 0)

RE: matches any sequence of strings from

Examples:
(ab)* matches ab repeated any number of times

, ab, abab, ababab, ...
(ab*)* matches ab* repeated any number of times

, a, ab, abb, abb|ab, a|ab|ab|ab, a|a|a|a|a, ...

Common Patterns: (a+b)*

(a+b)* = every possible string over {a,b}

a(a+b)* = is every possible string starting with a

Can be used with bigger building blocks...

((a+b)(a+b))* matches (a or b)(a or b) any number.
, aa, ba, ab|ab, aa|bb|aa, ...

All the strings of length a multiple of 2

Common Patterns: R +

To say something is optional use or with empty string.

R + matches string from or an empty string.

Example:
(s+)pot matches "s" or empty followed by "pot"
spot, pot

Common Patterns: R1 + R2

Break big problem into smaller ones.

If then make REs for and instead.

Strings beginning and ending with same character {a,b}
(beginning/ending a) (beginning/ending b)
(a (a+b)* a) + (b (a+b)* b)

Use + to add missing elements
(a (a+b)* a) + (b (a+b)* b) + a + b

Design method

1. Think in patterns
(any char)(any string)(same char)
a(any string)a + b(any string)b
a(a+b)*a + b(a+b)*b

2. Try to "break" your RE
Find a string it produces that it shouldn't
Find a string it doesn't produce that it should
This is how I grade quizzes

Example:

Pattern: (any number of 0) 1 (any number of 0)

RE: 0* 1 0*

What does it generate?
{0}* {1} {0}*
{ , 0, 00, 000, ...} {1} { , 0, 00, 000, ...}
{1, 01, 10, 001, 010, 001, 0001, 0010, 0100, 1000, ...}

Fits description!

Example:

Pattern: (any string) 1 (any string)

RE: (0+1)* 1 (0+1)*

What does it generate?
{0,1}* {1} {0,1}*
{ , 0, 1, 00, 01, 10, 11, ...} {1} { , 0, 1, 00, 01, 10, 11, ...}
{1, 01, 10, 11, 001, 010, 011, 100, 101, 111, ...}
Useful to think in length order.
Write all length 1, then length 2, then length 3, ...

Example:

Even definition: even iff for some integer .

Pattern: (2 characters) any number of times

RE: (00+01+10+11)* = ((0+1)(0+1))*

Example:

It's harder to express what's missing in a pattern.

Break into subproblems.

Pattern:
(len 0) + (len 1) + (len 2) + (len 4) + (len 5) + ...
(len 0) + (len 1) + (len 2) + (len 4)

RE:
 + (0+1) + (0+1)(0+1) + (0+1)(0+1)(0+1)(0+1)(0+1)*

