* A finite automata (FA) is a collection of states, represented
as circles.

O
O O



* A finite automata (FA) is a collection of states, represented
as circles.

* |f we wanted to represent the FA mathematically, we
would need to label each state and put the labels in a set

S =1{a, b, c}
O
O ©



* Every state must have an arrow coming from it for every
character in the input alphabet.

* Mathematically, we need to indicate the input alphabet A =
{0, 1} and arrows. Since each arrow maps a (state, char) pair

to a state, a function is a good representation F: S X A — S.

F 0 1
a b a
b C b




* There must be exactly one start state indicated by an
unlabeled arrow from nowhere. And zero or more accept
states (also called final) indicated by double circles.

e Mathematically, we can call S; the start (initial) state, S; = a,
and let Y = {b, c} be the set of accept states.




 Because you can represent a FA graphically or
mathematically, these are identical FA.

A =1{0, 1}
S =1{a, b, c}
Si=a
Y ={b, c}
F shown below in table form

F 0 1

1 a b a
b .................. C .................. b .........
c .................. a .................. C .........

 Note about state labels: They can be any name you wish
and are optional in drawings.



FA Operation

* When presented an input:
e Start at start state
e Consume characters from left to right
 Follow arrow for each character consumed

e |f end in accept state "accept”, else "reject”



e Example: Input is 10011. Start in the start state.

Input: 10011



e Consume 1, follow arrow with 1, still in state "a"

Remaining after consume and move: 0011



e Consume 0O, follow arrow with O, now in state "b"

Remaining after consume and move: 011



e Consume 0O, follow arrow with O, now in state "c"

Remaining after consume and move: 11



e Consume 1, follow arrow with 1, still in state "c¢"

Remaining after consume and move: 1



e Consume 1, follow arrow with 1, still in state "c¢"

Remaining after consume and move: (empty)

e After consuming input, we end in an accept state.
10011 is accepted by this FA.
10011 is in the "language” of this machine.



Meaning of FA

* You can often design an FA to accept strings that are
easily described in English.

* This FA accepts all strings over alphabet {0, 1} that don't
have a multiple of three 0O's.

e |f this machine is called M, then L(M) = { x | x is a string
over alphabet {0,1} and the number of O'sinx mod 3 =0}



Designing FA

Give each state meaning. The only "memory" an FA has is
the current state.

Design the part of an FA that accepts good strings first.

Make sure the FA is legal: one start state, arrow from each
state for each character in the input alphabet.

Test: try to find good string that's rejected; try to find bad
string that's accepted. (This is how | grade FA's!)



