- A finite automata (FA) is a collection of states, represented as circles.
- A finite automata (FA) is a collection of states, represented as circles.
- If we wanted to represent the FA mathematically, we would need to label each state and put the labels in a set $S=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Every state must have an arrow coming from it for every character in the input alphabet.
- Mathematically, we need to indicate the input alphabet $A=$ $\{0,1\}$ and arrows. Since each arrow maps a (state, char) pair to a state, a function is a good representation $F: S \times A \rightarrow S$.

F	$\mathbf{0}$	$\mathbf{1}$
\mathbf{a}	b	a
\mathbf{b}	c	b
\mathbf{c}	a	c

- There must be exactly one start state indicated by an unlabeled arrow from nowhere. And zero or more accept states (also called final) indicated by double circles.
- Mathematically, we can call S_{i} the start (initial) state, $S_{i}=\mathrm{a}$, and let $Y=\{b, c\}$ be the set of accept states.

- Because you can represent a FA graphically or mathematically, these are identical FA.

- Note about state labels: They can be any name you wish and are optional in drawings.

FA Operation

- When presented an input:
- Start at start state
- Consume characters from left to right
- Follow arrow for each character consumed
- If end in accept state "accept", else "reject"
- Example: Input is 10011. Start in the start state.

Input: 10011

- Consume 1, follow arrow with 1 , still in state "a"

Remaining after consume and move: 0011

- Consume 0, follow arrow with 0, now in state "b"

Remaining after consume and move: 011

- Consume 0, follow arrow with 0 , now in state "c"

Remaining after consume and move: 11

- Consume 1, follow arrow with 1 , still in state " c "

Remaining after consume and move: 1

- Consume 1, follow arrow with 1 , still in state "c"

Remaining after consume and move: (empty)

- After consuming input, we end in an accept state. 10011 is accepted by this FA. 10011 is in the "language" of this machine.

Meaning of FA

- You can often design an FA to accept strings that are easily described in English.
- This FA accepts all strings over alphabet $\{0,1\}$ that don't have a multiple of three 0 's.
- If this machine is called M, then $L(M)=\{x \mid x$ is a string over alphabet $\{0,1\}$ and the number of 0 's in $x \bmod 3=0\}$

Designing FA

- Give each state meaning. The only "memory" an FA has is the current state.
- Design the part of an FA that accepts good strings first.
- Make sure the FA is legal: one start state, arrow from each state for each character in the input alphabet.
- Test: try to find good string that's rejected; try to find bad string that's accepted. (This is how I grade FA's!)

