Instructions

- Complete the follow exercises on sperate sheets of paper. Scan your solutions and upload a PDF document. The file should have the following naming convention:
"Last Name First Name Assignment Name.pdf"
"Albright Charles Chapter 9 Assignment.pdf"
- Make sure your pages are numbered in the lower right-hand corner.
- Make sure each page has your full name and the name of the assignment in the upper right-hand corner of each page.
- Note: You do not need to include this page in your solutions.

Solutions

- Because of the unique circumstances of our situation, take special care with your solutions. Make sure they are complete, organized, clear and thorough. Error on the side explaining too much.
- Your final answer should be simplified and exact.
- Graphs should be clear, legible and labeled.

Math 31 | Chapter 9 Assignment | Differential Equations

1. Verify $y(x)=c_{1} \sin x+c_{2} \cos x-(\cos x) \ln (\sec x+\tan x)$ is a solution to $y^{\prime \prime}+y=\tan x$.
2. Find a function f such that $f^{\prime}(x)=x f(x)-x$ and $f(0)=2$.
3. Solve the DE $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)\left(1-\frac{m}{P}\right)$ if k, M and m are constants.
4. Solve $y^{\prime}+\frac{2}{x} y=\frac{y^{3}}{x^{2}}$ using the following technique:

A Bernoulli differential equation (named after James
Bernoulli) is of the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

Observe that, if $n=0$ or 1 , the Bernoulli equation is linear.
For other values of n, show that the substitution $u=y^{1-n}$ transforms the Bernoulli equation into the linear equation

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) Q(x)
$$

5. Solve the second-order equation $x y^{\prime \prime}+2 y^{\prime}=12 x^{2}$ by making the substitution $u=y^{\prime}$.
6. A tank with a capacity of 400 L is full of a mixture of water and chlorine with a concentration of 0.05 g of chlorine per liter. In order to reduce the concentration of chlorine, fresh water is pumped into the tank at a rate of 4 L / s. The mixture is kept stirred and is pumped out at a rate of $10 \mathrm{~L} / \mathrm{s}$. Find the amount of chlorine in the tank as a function of time.
7. A tank with a capacity of 1000 L is fill with 800 L of a mixture of water and chlorine with a concentration of 0.1 g of chlorine per liter. A solution of 0.075 g per liter is pumped into the tank at a rate of $5 \mathrm{~L} / \mathrm{s}$. The mixture is kept stirred and is pumped out at a varying rate $\left(5-\frac{2}{t+1}\right) \frac{L}{s}$ where t is seconds. Find the amount of chlorine in the tank when the amount of water is at it's maximum.
