§9.1 | Differential Equations

A differential equation is an equation that relates a function to its derivatives. They are some of the hardest equations to solve, many of them being unsolvable. Yet, since they arise in science and nature so often a great deal of effort is spent developing techniques to solve them.

Example 1: Why would it be hard to figure how fast a cup of hot liquid cools to room temperature?

The good news for us is that we will only be considering very simple examples of differential equations as a mini-introduction.

Example 2: I am thinking of a function y that...

1. $y=y^{\prime}$
2. $y^{\prime}=5$
3. $y^{\prime}=3 x^{2}+4$
4. $y^{\prime \prime}=-y$
5. $y^{\prime \prime}=y$
6. $y^{\prime}=5 y$
7. $y^{\prime}=\frac{1}{y}$
8. $y^{\prime}=y^{2}$
9. $y^{\prime}=x+y$

Example 3: Verify that every function defined by

$$
y=\frac{1+c e^{t}}{1-c e^{t}}
$$

Is a solution to the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$?
What do we need to do to determine this?

Example 4: Find one particular solution to $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$ if $y(0)=2$.

§9.3 | Separable Equations

A separable differential equation is one in which the x-variables and y-variables can be "separated" and the equation can easily be solved by integrating both sides of the equation once the variables have been separated.

Examples 1-5:

Solve the following differential equations:

$\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$	$y^{\prime}=x^{2} y$	$4 \frac{d l}{d t}+12 l=60$
$y^{\prime}=y \tan x$	$x \ln x=y\left(1+\sqrt{3+y^{2}}\right) y^{\prime}$	
$y(1)=1$		

Example 4: A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$.
The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after half of an hour?

A TANK CONTAINS 20 kg OF SALT DISSOLVED IN 5000 L OFWATER.

BRINE THAT CONTAINS 0.03 kg OF SALT PER LITER OF WATER ENTERS THE TANK AT A RATE OF 25L/MIN.
THE SOLUTION IS KEPT THORO WGHLY MIXED AND DRAINS FROM THE TANK AT THE SAME RATE.

HOW MUCH SALT REMAINS IN THE TANK AFTER HALF OF A HOUR.
SOLAN

LET $y(t) R E P R E S E N T$ THE AMOUNT OF SALT INTHE TANK AT TIME t (HOURS).
(Note the typos)

§9.4 | Models for Population Growth

One of the amazing relationships differential equations (DE) can model and solve are different models for population growth. We will look at two different models: natural growth and

Natural growth is based on the assumption that a population grows proportional to the size of the population

$$
\frac{d P}{d t}=k P
$$

I think we can solve this equation by guessing.
Considering our real world intuitions, is it reasonable that a population would grow exponentially? Populations usually hit what is called "the carrying capacity" of the environment. If we assume a population as it begins to grow will approximately grow exponentially and then at some point "level off" we get the following equation:

$$
\begin{aligned}
\frac{d P}{d t} & \approx k P \\
\frac{1}{P} \frac{d P}{d t} & \approx k \\
\frac{1}{P} \frac{d P}{d t} & =k\left(1-\frac{P}{M}\right)
\end{aligned}
$$

Where M is the carrying capacity. This model is interesting. Initially it looks exponential, and then it levels of and hits a celling, right? Let's try to solve for P .
What does $1-\frac{P}{M}$ represent?

THE LOGISTIC EQUATION $\rightarrow \rightarrow \left\lvert\,-\frac{P}{M} \approx \begin{gathered}\text { COMPLIMENT } \\ O F O \% O F \\ \text { THOTOOM }\end{gathered}\right.$ THATPOPOLATION
REP RESETS

$$
\frac{1}{P(1-P / M)} \partial P=K \partial t
$$

if $P=0, A=-1$

$$
\begin{aligned}
& \int \frac{A}{P}+\frac{B}{\frac{1}{m} P-1} d P=\int k d t \\
& \int \frac{-1}{P}+\frac{\frac{1}{m}}{\frac{1}{m} P-1} d P=k t+C
\end{aligned}
$$

$$
\rightarrow \quad P<M-P
$$

$$
\rightarrow A=e^{c}
$$

(FOR $\operatorname{EAS} \epsilon$)

$$
\begin{gathered}
\int-\frac{1}{P}+\frac{1}{P-M} \partial P=k t+c \\
\ln |P|+\ln |P-M|=k t+c \\
\ln |P|-\ln |M-P|=k t+c \\
\ln \left|\frac{P}{M-P}\right|=k t+c \\
\frac{P}{M-P}=e^{c} e^{k t}
\end{gathered}
$$

$$
\ln |P|-\ln |M-P|=k t+c \mid r \rightarrow M
$$

$$
p=\frac{1+A e^{-k t}}{}
$$

Notice, M
$P(0)=\frac{M}{1+A}$

$$
P=(M-P) A e^{k t}
$$ $\left[A=\frac{M-P(0)}{P(0)}\right]$

$$
\begin{aligned}
& P\left(1+A e^{k t}\right)=M A e^{k t} ; \lim ^{[M-\overline{P(0)}} . \\
& P=\frac{M A e^{k t}}{1+A e^{k t}} \cdots \cdots(t)=M
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial P}{\partial t}=K P\left[1-\frac{P}{M}\right]^{-1} \begin{array}{l}
1 \rightarrow 1=A\left(\frac{P}{m}-1\right)+P B \\
1
\end{array} \\
& 1=A\left(\frac{M}{M}-1\right)+M B \\
& B=+\frac{1}{m}
\end{aligned}
$$

Example 1: Suppose a population has a carrying-capacity of $M=1000$ begins with a population of 10 individuals. If there are 15 individuals after 3 units of time, compare the both models of growth we have seen thus far.

§9.5 | First-Order Linear Differential Equations (FOLDE)

Question 1: What two functions are their own derivative?
Question 2: What is $\frac{d}{d x}\left(e^{P(x)}\right)$? What is $\frac{d}{d x}\left(e^{\int P(x) d x}\right)$?
Now for a magic trick....
Example 1: $y^{\prime}+2 x y=2 x^{3}$
A First Order Linear Differential Equations (FOLDE) is a DE that can be written in the form:

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

All FOLDE can be solved by multiplying by an integrating factor: $I=e^{\int P(x) d x}$.
Example 2: $y^{\prime}+\frac{1}{x \ln x} y=9 x^{2}$
Example 3: (new tank) problem

Example 3 (ITP): A particular circuit congaing and electromotive force, a capacitor with a capacitance of C farads (F), and a resister with a resistance of R ohms (Ω). The voltage drop across the capacitor is $\frac{Q}{C}$, Where Q is the charge (in coulombs), so in this case Kirchhoff's Law gives

$$
\begin{aligned}
R I+\frac{Q}{C} & =E \\
R I(t)+\frac{Q(t)}{C} & =E(t)
\end{aligned}
$$

But, $I(t)=\frac{d Q}{d t}(t)$ (from Physics). If $\mathrm{R}=5 \Omega, \mathrm{C}=0.05 \mathrm{~F}$ and $E(t)=60 \mathrm{~V}$, find the charge function $Q(t)$ if the initial charge $Q(0)=0$ coulombs. Find the current function $I(t)$.

Solution:

$$
\begin{aligned}
5 /(t)+\frac{Q(t)}{0.05} & =E(t) \\
5 \frac{d Q}{d t}(t)+\frac{Q(t)}{0.05} & =E(t) \\
5 \frac{d Q}{d t}+\frac{Q}{1 / 20} & =60 \\
5 \frac{d Q}{d t}+20 Q & =60 \\
\frac{d Q}{d t}+4 Q & =12
\end{aligned}
$$

Answer: $Q(t)=3\left(1-e^{-4 t}\right) \& I(t)=12 e^{-4 t}$

