
6/18/21, 8:50 PMhash_tricks

Page 1 of 3http://krovetz.net/152/module_hash/hash_tricks.html

Tricks to speed-up universal hashing

The most popular almost-universal hash function requires the evaluation of a polynomial over an
integer field. Two key techniques to making this efficient is divisionless modular reduction and
Horner's method for evaluation.

Divisionless mod

Division is the most expensive integer operation on a computer. On many CPUs, addition can take
a single clock cycle to perform while division takes dozens. When performing high-speed hashing,
division is to be avoided.

Let's say you need to compute x mod y. You can produce a value that is congruent to x mod y as
follows.

1. Express y as 2a-b for some a and b. The technique is more efficient the smaller b is, so it's
helpful if y is just a bit smaller than a power of 2. The "Mersenne" primes, which are all of the

form 2a-1, are especially useful in cryptography.

2. Rewrite x as (xhi)(2a)+(xlo). This can always be done by letting xlo = x mod 2a and letting xhi = x

div 2a ("div" here is integer division, ie, the whole number of times 2a goes into x). On a
computer, xlo is simply the low a bits of x and xhi is the rest of the bits.

3. At this point x mod y = [(xhi)(2a)+(xlo)] mod (2a-b) for the a, b, xlo, and xhi that you've

identified. Note that you can apply mod to intermediate terms at will to simplify terms, which

means 2a can be replaced with 2a mod (2a-b) in this context, which is just b (2a-b goes into 2a
once and leaves a remainder of b).

The end result is that x mod y = [(xhi)(b)+(xlo)] mod (2a-b) where xlo is the low a bits of x and xhi is

the rest of the bits. The end result of this process is a number that if modded by y would give the
correct result of x mod y. It is thus interchangeable with the true x mod y when used as an
intermediate value. When a final result is required, however, a true mod y would need to be
computed.

Example: 10,000 mod 255. 10,000 in binary is 10 0111 0001 0000. 255 is 28-1 (ie, a=8 and b=1). xlo =

0001 0000, the low 8 bits, and xhi = 10 0111, the rest of the bits. This means 10,000 mod 255 =

[(xhi)(b)+(xlo)] mod 255 = [(39)(1)+16] mod 255 = 55. Because 55 < 255, this is the actual result of

10,000 mod 255 and not just a congruent value.

Example: 500 mod 30. 500 in binary is 1 1111 0100. 30 is 25-2 (ie, a=5 and b=2). xlo = 1 0100, the

low 5 bits, and xhi = 1111, the rest of the bits. This means 500 mod 30 = [(xhi)(b)+(xlo)] mod 30 =

[(15)(2)+20] mod 30 = 50 mod 30. Because 50 ≥ 30, this is not the actual result of 500 mod 30 but
just a congruent value. To get the value to a bits, we can continue this process until the result is 5

6/18/21, 8:50 PMhash_tricks

Page 2 of 3http://krovetz.net/152/module_hash/hash_tricks.html

bits or less.

50 in binary is 11 0010. 30 is 25-2 (ie, a=5 and b=2). xlo = 1 0010, the low 5 bits, and xhi = 1, the rest

of the bits. This means 50 mod 30 = [(xhi)(b)+(xlo)] mod 30 = [(1)(2)+18] mod 30 = 20 mod 30.

Because 20 < 30, this is the actual result of 50 mod 30 (and thus 500 mod 30) and not just a
congruent value.

This can be turned into pseudocode:

Horner's method

Consider the polynomial a1kn + a2kn-1 + a3kn-2 + ... ank1. A naive implementation might call

pow(k,x) for each x = 1 ... n. This would be wasteful. Horner suggested the following algorithm
instead.

How does it work? The first iteration computes (0 + a1k) = a1k. The second iteration then does one

add and one multiply to get (a1k + a2)k = a1k2 + a2k. The third iteration then does one add and one

multiply to get (a1k2 + a2k + a3)k = a1k3 + a2k2 + a3k. In general, the i-th iteration increases the

degree of each term from the prior iteration's polynomial and adds another term aikn+1-i. After the

n-th iteration, the desired polynomial has been computed.

The benefits of this process are twofold. The polynomial is evaluated in just n additions and n
multiplications, which is minimal, but also the length n is not needed at the begining of the
computation. The loop could be written while in.hasNext() which would continue the loop as
long as there are more coefficients to process. This is an important property for streaming data,
where you don't know how long your data is until it terminates.

divisionless(x,a,b): // return value congruet to x mod 2^a-b
 xlo = x & ((1 << a)-1) // use mask to grab low a bits
 xhi = x >> a // xhi is bits beyond the low a
 return xhi * b + xlo

horner(a[1..n], k): // returns evaluation of polynomial given above
 acc = 0
 for i = 1 to n:
 acc += a[i]
 acc *= k
 return acc

6/18/21, 8:50 PMhash_tricks

Page 3 of 3http://krovetz.net/152/module_hash/hash_tricks.html

