These notes are intended to remind me of what I think is important. It is not a substitute for reading the book and coming to class.

Cryptographic Hashing

A hash function maps a large domain into a small range.
A cryptographic hash function has no key and has function signature
$\{0,1\}^{\wedge} *-->\{0,1\}^{\wedge} n$
(ie, takes strings of any length and outputs n-bit string)
The most important properties for crypto hash h are:

- preimage resistance: Given z, it is hard to find x where $h(x)=z$
- 2nd preimage resistance: Given x it is hard to find $y!=x$ where $h(x)=h(y)$
- Collision resistant: It is hard to find any $x!=y$ where $h(x)=h(y)$

Other nice properties

- Efficiency: h is efficient to compute
- Random: h behaves like a public randomly chosen function

Most famous cryptographic hashes

- MD5 (1992): 128-bit. Broken 2004. Now collisions can be found within seconds.
- SHA-1 (1995): 160-bit. Weakness found 2005. Collisions in 2^51 operations.
- SHA-2 (2001): 256 or 512 bit. Similar to SHA-1 but not same weakness.
- SHA-3 (2012): 256 or 512 bit. Competition similar to AES competition.

All of these except SHA-3 are based on the Merkle-Damgard construction

- Pad message to multiple of block length
- Process block at a time, feeding chaining value and block to "compression function"
- Compression function is a pseudo-random confusion/difusion function
- Output is final chaining value.
[Draw picture]
Problem: Extension attack
SHA-1 pads M as $M||10 *||$ bitlength(M) where $10 *$ are as needed to get to a multiple of 512 bits.

Let
$\mathrm{y}=\mathrm{SHA}-1(\mathrm{M})$
we know what comes out of the chaining value of $M||10 *||$ bitlength(M)
Let
$M^{*}=M \operatorname{||~} 10 *$ || bitlength(M) || M'
If we know y we can now figure out $\operatorname{SHA}-1\left(M^{*}\right)$ without ever knowing M.
Reductions

We say that Problem A reduces to Problem B if a Problem B Solver can be used as a subroutine to create a Problem A Solver:

```
ASolver(w) \\ w is an instance of Problem A
    x = preprocess(w) \\ Convert w into an instance of Problem B
    y = BSolver(x) \\ y is the solution to x
    z = postprocess(y) \\ Convert the solution to x into a solution for w
    return z \\ Return correct answer for w
```

If we could convince ourselves that there is a way to solve Problem A instances in this way, then we will have shown that

The existence of BSolver implies the existence of ASolver

This is purely an existential statement. It is saying *if* a BSolver existed, then so would an ASolver exist. It does *not* say that an ASolver actually exists.

The contrapositive of this statement is of prime importance in security.
If there is no ASolver, then there is no BSolver

This important, because we can define Problems A and B as that of breaking a security scheme.

```
ABreaker(w) \\ w is an instance of Problem A
    x = preprocess(w) \\ Convert w into an instance of Problem B
    y = BBreaker(x) \\ y is the solution to x
    z = postprocess(y) \\ Convert the solution to x into a solution for w
    return z \\ Return correct answer for w
```

If we can show how to use a BBreaker to construct an ABreaker, then
no ABreaker implies no BBreaker
or, in other words

A secure implies B secure
This means that, for example

- If we make an encryption scheme using a block cipher (eg, CTR), and
- We show how to break the block cipher using an encryption scheme breaker, then
block cipher security implies encryption scheme security.
And so, if we trust our block cipher, then we can trust encryption scheme too.

Some simple general reductions:

Median finding reduces to sorting. isPrime reduces to factoring. hasClique reduces to subgraphIsomorphism

```
If A reduces to B:
    B solver --> A Solver (A is not harder than B)
    no A Solver --> no B Solver (B is not easier than A)
```

```
CollisionFinder() // Return x!=y where h(x)==h(y)
    repeat
    let x be randomly chosen
    y = PreimageFinder(h(x)) // Returns "error" if fails
    until ((x!=y) && h(x)==h(y))
    return (x,y)
```

Why a loop?

- PreimageFinder might find x given $h(x)$. Unlikely but possible.
If PreimageFinder works well, CollisionFinder works well
(PreimageFinder exists --> CollisionFinder exists)
(not CollisionFinder exists --> not PreimageFinder exists)
(Collision resistant --> Preimage resistant)

CollisionFinder reduces to SecondPreimageFinder

```
CollisionFinder() // Return x!=y where h(x)==h(y)
    repeat
        let x be randomly chosen
        y = SecondPreimageFinder(x) // Returns "error" if fails
    until (h(x)==h(y))
    return (x,y)
```

Why a loop?

- x might be the only input mapping to $\mathrm{h}(\mathrm{x})$. Unlikely but possible.
If SecondPreimageFinder works well, CollisionFinder works well
(SecondPreimageFinder exists --> CollisionFinder exists)
(not CollisionFinder exists --> not SecondPreimageFinder exists)
(Collision resistant --> Second Preimage resistant)

```
SecondPreimageFinder(x) // Finds y!=x where h(x)==h(y)
    repeat
        y = PreimageFinder(h(x))
        until (x!=y)
        return y
```

Why a loop?

- PreimageFinder might find x given $h(x)$. Unlikely but possible.
- If PreimageFinder is randomized, will return different preimage each time.
If PreimageFinder works well, SecondPreimageFinder works well
(PreimageFinder exists --> SecondPreimageFinder exists)
(not SecondPreimageFinder exists --> not PreimageFinder exists)
(Second Preimage resistant --> Preimage resistant)
PreimageFinder(y) // Finds x where $h(x)=y$
-••
$(a, b)=$ CollisionFinder()
...
???
(a, b) is unrelated to y, so doesn't help

```
SecondPreimageFinder(x) // Finds y!=x where h(x)==h(y)
    •••
    (a,b) = CollisionFinder()
    ...
    ???
(a,b) is unrelated to x, so doesn't help
```

```
PreimageFinder(y) // Finds x where h(x) = y
    ...
    y' = SecondPreimageFinder(x)
    ???
Don't know a first preimage of y, so cannot ask for a second
```

CR --> SPR --> PR
CR gives us all three goals, and is therefore the main goal in a crypto hash.
Security reduction.
Show that breaking AES reduces to breaking CTR.
Here is an algorithm to break AES:

1. Let f be randomly chosen as either $\operatorname{AES}(\mathrm{K}, \mathrm{x})$ for random K , or a random 128-bit function.
2. Let A be an adversary that is good at distinguishing CTR[AES] from an oracle that returns appropriate-length random strings.
3. Run A. For each of A's queries, compute the result using CTR[f] (ie, encrypt A's message using f instead of a block cipher).
4. If A guesses CTR[AES], we guess AES for f. If A guesses "random", we guess "random" for f.

Note that if f is AES, then our use of CTR[f] produces the exact same distribution of responses as CTR[AES], and if f is a random function, then CTR[f] produces the exact same distribution as random encryption.

So, if A does a good job breaking CTR[AES], then this algorithm does equally well breaking AES.

And the contrapositive:
if nobody does well breaking AES, then nobody does well breaking CTR[AES].

Also,
if we trust AES to be good, then we should trust CTR[AES] to be good.

