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Introduction

What is relational database design?
The grouping of attributes to form relation 
schemas

 What are good relational design?
Formal measures
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Functional Dependencies

FDs are constraints that are 
derived from 
   meaning  and interrelationships  of 

the data attributes

A functional dependency is a 
property of the semantics or 
meaning of the attributes.
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Definition of functional 
dependency

A functional dependency, 
denoted by X  Y, between two sets 
of attributes X and Y that are 
subsets of R specifies a constraint 
on the possible tuples that can form 
a relation state r of R. The constraint 
is that, for any two tuples t1 and t2 
in r that have t1[X] = t2[X], they 
must also have t1[Y]=t2[Y].
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FD example

A set of attributes X functionally 
determines  a set of attributes Y if 
the value of X determines a unique 
value for Y.
Social security number functionally 
determines employee name
SSN  ENAME
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Notation of Functional 
Dependencies 

X  Y
 function dependency from X to Y
 Y is functionally dependent on X
 X: left hand side FD. Y: right hand side FD

X  Y holds if whenever two tuples have 
the same value for X, they must  have the 
same value for Y
A FD is a property of the relation schema R, 
not of a particular legal relation state r of R.
X  Y in R specifies a constraint  on all 
relation instances r(R)
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Examples of FD

Social security number determines 
employee name
SSN  ENAME
Project number determines project 
name and location
PNUMBER  {PNAME, PLOCATION}
Employee ssn and project number 
determines the hours per week that the 
employee works on the project
{SSN, PNUMBER}  HOURS 
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Infer additional FDs
Given a set of FDs F, we can infer  
additional FDs that hold whenever the 
FDs in F hold.

Given a set of functional dependencies F
 F= {SSN  ENAME

     PNUMBER  {PNAME, PLOCATION}
     {SSN, PNUMBER}  HOURS }

Infer?
 {ssn,bdata}  {ename,bdata}
 Pnumber  pname
 ssn  hours
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Inference Rules for FDs
Notation: XZ stands for {X,Z}

Armstrong's inference rules:
IR1. (Reflexive)

 If Y  X, then X  Y
IR2. (Augmentation)

If X  Y, then XZ  YZ
IR3. (Transitive) 

If X  Y and Y  Z, then X  Z
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Additional Inference Rules
IR 4:(Decomposition) 

If X  YZ, then X  Y and X  Z
IR 5: (Union) 

If X  Y and X  Z, then X  YZ
IR6: (Psuedotransitivity) 

If X  Y and WY  Z, then WX  Z

Deduced from IR1, IR2, and IR3
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Closure
F+: Closure of F.  The set of all 
dependencies that include F as well as 
all dependencies that can be inferred 
from f is called the closure of F. 
X+: Closure of X under F. The set of 
attributes that are functionally 
determined by X based on F.
X + can be calculated by repeatedly 
applying IR1, IR2, IR3 using the FDs in F 



12

Algorithm to calculate X+

Determining X+, the closure of x under F
X+: =X;
Repeat

oldX+ := X+;
for each functional dependency Y->Z in F do

if Y  X+ then X+ := X+  U  Z;

Until (X+ =oldX+ );
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Example of calculate X+ 

F= {SSN-> ENAME, 
PNUMBER -> {PNAME, PLOCATION},
{SSN,PNUMBER} ->HOURS}

{SSN}+= {SSN, ENAME}
{SSN,PNUMBER}+ = {SSN, PNUMBER, 
ENAME, PNAME, PLOCATION, HOURS}
{PNUMBER}+ = ___?
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Equivalence of Sets of FDs 

Two sets of FDs F and G are equivalent 
if:
- every FD in F can be inferred from G, and
- every FD in G can be inferred from F

F and G are equivalent if F + =G +

Definition: F covers G if every FD in G can 
be inferred from F (i.e., if G +  F +)
F and G are equivalent if F covers G and 
G covers F
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Minimal Sets of FDs

A set of FDs is minimal if it satisfies the 
following conditions:

(1) Every dependency in F has a single attribute 
for its right hand side.

(2) We cannot replace any dependency X -> A in 
F with a dependency Y -> A, where Y  X, 
and still have a set of dependencies that is 
equivalent to F.

(3) We cannot remove any dependency from F 
and have a set of dependencies that is 
equivalent to F.



16

Minimal Sets of FDs

Every set of FDs has an equivalent 
minimal set
There can be several equivalent 
minimal sets
We can always find at least one 
minimal set using Algorithm 10.2
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Algorithm 10.2 Finding a Minimal 
Cover F for a set of functional 
Dependencies E

1. Set F: = E;
2. Replace each functional dependency X  {A1, A2,…, 

An} in F by the n functional dependencies X  A1, X 
 A2,…, X  An

3. For each functional dependency X A in F
for each attribute B that is an element of X
if {{F-{X A}} U {{x-{B}} A}} is equivalent to F
then replace X  A with (X-{B})  A in F

4. For each remaining functional dependency XA in F
if (F-{X A}) is equivalent to F,
then remove X A from F.
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What is normalization?

Normalization: The process of 
decomposing unsatisfactory 
relations by breaking up their 
attributes into smaller relations
 Use 

 keys 
 FDs 

to certify whether a relation schema is 
in a particular normal form 
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Practical Use of Normal 
Forms

Normalization is carried out so that the resulting 
designs are of high quality and meet the desirable 
properties 
The practical utility of these normal forms 
becomes questionable when the constraints on 
which they are based are hard to understand or 
to detect
The database designers need not normalize to 
the highest possible normal form. 
Denormalization: the process of storing the join 
of higher normal form relations as a base relation
—which is in a lower normal form    
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Definitions of Keys and Attributes 
Participating in Keys

A superkey of a relation schema R = {A1, A2, 
...., An} is a set of attributes S  R with the 
property that no two tuples t1 and t2 in any 
legal relation state r of R will have t1[S] = 
t2[S] 

 (k)+ = ____ ?
A key K is a superkey with the additional 
property that removal of any attribute from K 
will cause K not to be a superkey any more. 
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Definitions of Keys and Attributes 
Participating in Keys (Cont.)

If a relation schema has more than 
one key, each is called a 
candidate key. One of the 
candidate keys is arbitrarily 
designated to be the primary 
key, and the others are called 
secondary keys.
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First Normal Form 

Disallows composite attributes, 
multivalued attributes
Disallows attributes whose values 
for an individual tuple are non-
atomic
Considered to be part of the 
definition of relation 
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Figure 10.8 Normalization into 1NF
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Normalization into 1 NF 

Solution 1 (best)
 Department(dname,dnumber, dmgrssn)
 dept_loc(dnumber, dlocation)

Solution 2
 department(dnumber,dlocation,dname,dmgrs

sn)

Solution 3
 department(dnumber,dname,dmgrssn, 

dlocation1,dlocation2,dlocation3)
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Full functional dependency 
Full functional dependency 
 a FD  Y  Z, where removal of any 

attribute from Y means the FD does 
not hold any more

 e.g. {SSN, PNUMBER}  HOURS 

Partial dependency
  e.g. {SSN, PNUMBER}  ENAME
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2 NF
General definition
Take into account relations with 
multiple candidate keys
Prime attribute: An attribute that is 
part of any candidate key 
A relation schema R is in second 
normal form (2NF) if every non-
prime attribute A in R is fully 
functionally dependent on every key 
of R.
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2NF - Example
Keys: 
 property_id#
 {county_name,lot#}

Violate/satisfy? 2NF 
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3NF

X  Y is trivial if Y ⊂ X, otherwise, it 
is nontrival.
A relation schema R is in third 
normal form (3NF) if, whenever a 
non-trivial FD X  A holds in R, then 
either: 
(1) X is a superkey of R, or 
(2) A is a prime attribute of R
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3NF - example

Keys: 
 property_id#
 {county_name,lot#}

Violate/satisfy? 3NF 
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BCNF (Boyce-Codd Normal 
Form) 

A relation schema R is in Boyce-Codd 
Normal Form (BCNF) if whenever an 
nontrivial FD X  A holds in R, then X is 
a superkey of R
Each normal form is strictly stronger than the 
previous one

 Every 2NF relation is in 1NF
 Every 3NF relation is in 2NF
 Every BCNF relation is in 3NF

There exist relations that are in 3NF but not in 
BCNF
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BCNF - example

Keys: 
 property_id#
 {county_name,lot#}

Violate/satisfy? BCNF 
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These slides are based on the textbook of: 
R. Elmaseri and S. Navathe, 
Fundamentals of Database Systems, 7th 
Edition, Addison-Wesley. 
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