
1

CSc 134
Database Management
Systems

6. SQL

Ying Jin
Computer Science Department

California state University, Sacramento

2

SQL History
SQL-86 (SQL 1)
SQL-92 (SQL 2)
SQL-99 (SQL 3)
 Core: supposed to be implemented by all

RDBMS vendors
 Extension: optional modules such as data

mining, spatial data, temporal data, data
warehousing

Later updates:
 2003, 2006: Add XML features
 2008: incorporated more object database

features

3

CREATE TABLE
Specifies a new base relation by giving
it a name, and specifying each of its
attributes and their data types
A constraint NOT NULL may be specified
on an attribute

CREATE TABLE DEPARTMENT
(DNAME VARCHAR(10) NOT

NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9)
);

4

Attribute Data Types and
Domains in SQL

Numeric
 INTEGER or INT
 FLOAT or REAL
 DECIMAL(i,j), or DEC(i,j), or NUMBERIC(i,j)

 i: total number of decimal digits
 j: number of digits after the decimal point

Character-string
 fixed length

 CHAR(n) or CHARACTER(n)
 varying length

 VARCHAR(n)

5

Attribute Data Types and
Domains in SQL (Cont.)

Boolean
 TRUE, FALSE

Date
 DATE: year, month, day in the form YYYY-

MM-DD
 TIME: hour, minute, second in the form

HH:MM:SS

6

CREATE TABLE (Cont.)
Specify primary key
Referential integrity constraints (foreign keys).
Key attributes

 PRIMARY KEY
 UNIQUE phrases

CREATE TABLE DEPARTMENT
(DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL CHECK
(DNUMBER>0 AND

DNUMBER <21),
MGRSSN CHAR(9),
MGRSTARTDATE DATE,
PRIMARY KEY (DNUMBER),
UNIQUE (DNAME),
FOREIGN KEY (MGRSSN) REFERENCES

EMPLOYEE(SSN));

7

REFERENTIAL INTEGRITY
OPTIONS

We can specify CASCADE, SET NULL or SET
DEFAULT on referential integrity constraints
CREATE TABLE EMPLOYEE

(...
DNO INT NOT NULL DEFAULT 1,
...
PRIMARY KEY (SSN),

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)
ON DELETE SET NULL
ON UPDATE CASCADE,

FOREIGN KEY (DNO) REFERENCES
DEPARTMENT(DNUMBER)
ON DELETE SET DEFAULT
ON UPDATE CASCADE);

8

Giving Names to
Constraints

CREATE TABLE EMPLOYEE
(SSN CHAR(9),

...
CONSTRAINT EMPPK
PRIMARY KEY (SSN),

CONSTRAINT EMPDEPTFK
FOREIGN KEY(DNO) REFERENCES DEPARTMENT
(DNUMBER) ON DELETE SET DEFAULT ON UPDATE
CASCADE
...

)

9

DROP TABLE
Remove a relation (base table) and its
definition
The relation can no longer be used in
queries, updates, or any other
commands
Example:
DROP TABLE DEPENDENT;

 DROP TABLE DEPENDENT RESTRICT;
 DROP TABLE DEPENDENT CASCADE;

10

Drop Table (Cont.)

Cascade
 All constraints (e.g. foreign key

definitions in another relation) and
views reference the table are dropped
automatically from the schema.

Restrict
 A table is dropped only if it is not

referenced in any constraints.

11

ALTER TABLE
- Add column

Add an attribute to one of the base relations
New attribute=null automatically

Example:

ALTER TABLE EMPLOYEE ADD JOB
VARCHAR(12);

12

ALTER TABLE
- Drop column

ALTER TABLE EMPLOYEE DROP
ADDRESS;
ALTER TABLE DEPARTMENT ALTER
MGRSSN DROP DEFAULT;
ALTER TABLE DEPARTMENT ALTER
MGRSSN SET DEFAULT ‘122444444’;

13

Queries

SELECT <attribute list>
FROM <table list>
WHERE <condition>

14

15

Simple SQL Queries
Query 0: Retrieve the birthdate and

address of the employee whose
name is 'John B. Smith'.
Q0:
SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME='John' AND MINIT='B’
 AND LNAME='Smith’

SQL relation (table) is a bag of
tuples; it is not a set of tuples.

16

Simple SQL Queries (cont.)

Query 1: Retrieve the name and
address of all employees who work
for the 'Research' department.

17

Simple SQL Queries (cont.)
Query 2: For every project located in
'Stafford', list the project number, the
controlling department number, and the
department manager's last name, and
birthdate.

18

Qualify attribute name

Use the same name for two (or more)
attributes as long as the attributes are in
different relations
Qualify the attribute name with the relation
name by prefixing the relation name to the
attribute name

Example:

EMPLOYEE.LNAME, DEPARTMENT.DNAME

19

ALIASES
Query 8: For each employee, retrieve the
employee's name, and the name of his or her
immediate supervisor.

Q8: SELECT E.FNAME, E.LNAME, S.FNAME,
S.LNAME
FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

We can think of E and S as two different
copies of EMPLOYEE
 E represents employees in role of supervisees
 S represents employees in role of supervisors

20

ALIASES (cont.)
Aliasing can also be used in any
SQL query for convenience
Can also use the AS keyword to
specify aliases

Q8: SELECT E.FNAME, E.LNAME, S.FNAME,
S.LNAME

FROM EMPLOYEE AS E,
EMPLOYEE AS S

WHERE E.SUPERSSN=S.SSN

21

UNSPECIFIED
WHERE-clause

All tuples of the relations in the FROM-clause
are selected
= WHERE TRUE
Query 9: Retrieve the SSN values for all
employees.

Q9: SELECT SSN
FROM EMPLOYEE

22

UNSPECIFIED
WHERE-clause (cont.)

Example:

Q10: SELECT SSN, DNAME
FROM EMPLOYEE,

DEPARTMENT

CARTESIAN PRODUCT of employee and
department is selected

23

USE OF DISTINCT

Q11: SELECT SALARY
FROM EMPLOYEE

Q11A: SELECT DISTINCT SALARY
FROM EMPLOYEE

24

Set Operations

UNION, EXCEPT, INTERSECT
 apply the operation have the same

attributes
 attributes appear in the same order

Result: sets of tuples
UNION ALL, EXCEPT ALL,
INTERSECT ALL: bags of tuples

25

UNION Operation Example

• Make a list of all project numbers
for projects that involve an
employee whose last name is
“Smith”, either as a worker or as a
manager of the department that
controls the project.

26

ARITHMETIC OPERATIONS
+, -, *, /
Query 27: Show the effect of giving all
employees who work on the 'ProductX'
project a 10% raise.

Q27:
SELECT FNAME, LNAME, 1.1*SALARY AS INCREASED_SAL

FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE SSN=ESSN AND PNO=PNUMBER AND
PNAME='ProductX’

 Are the salaries different after execute the query?

Substring Pattern
Matching

LIKE comparison operator
 Used for string pattern matching
 % replaces an arbitrary number of zero or

more characters
 underscore (_) replaces a single character

Examples:
 WHERE Address LIKE ‘%Houston,TX%’;
 WHERE Ssn LIKE ‘_ _ 1_ _ 8901’;

27

28

ORDER BY
The ORDER BY clause is used to sort the tuples in a
query result based on the values of some attribute(s)
Query 28: Retrieve a list of employees and the
projects each works in, ordered by the employee's
department in a descending order, and within each
department ordered alphabetically by employee last
name, fname in an ascending order.

Q28:
SELECT DNAME, LNAME, FNAME, PNAME
FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT
WHERE DNUMBER=DNO AND SSN=ESSN AND
PNO=PNUMBER
ORDER BY DNAME DESC, LNAME ASC, FNAME ASC

29

NESTING OF QUERIES

Nested query
Outer query
Query 11: Retrieve the name and address of
all employees who work for the 'Research'
department.

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER

 FROM DEPARTMENT
 WHERE

DNAME='Research')

30

Comparison operators

ANY (or SOME)
ALL
List the names of employees whose salary is
greater than the salary of all the employees in
department 5.

31

THE EXISTS FUNCTION
Check whether the result of a correlated
nested query is empty
Query 12: Retrieve the name of each employee
who has a dependent with the same first name
as the employee.

32

THE EXISTS FUNCTION (cont.)

Retrieve the names of employees
who have no dependents

33

EXPLICIT SETS

It is also possible to use an explicit
(enumerated) set of values in the WHERE-
clause rather than a nested query
Query 13: Retrieve the social security numbers
of all employees who work on project number
1, 2, or 3.

Q13: SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNO IN (1, 2, 3)

34

Renaming of Attributes
Rename an attribute that appears in

the result of a query.
Q8A:Retrieve the last name of each employee and his or

her supervisor, while renaming the resulting attribute
names as Employee_name and Supervisor_name.

SELECT E.lname AS employee_name, s.lname AS
superviosr_name

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.super_ssn=S.ssn;

35

Joined Tables
Join operation in the FROM clause
Separate the selection and join
conditions in the where clause

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNUMBER=DNO;
SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE JOIN DEPARTMENT

 ON DNUMBER=DNO
WHERE DNAME='Research’;

INNER and OUTER Joins
INNER JOIN (versus OUTER JOIN)
 Default type of join in a joined table
 Tuple is included in the result only if a matching tuple

exists in the other relation
LEFT OUTER JOIN
 Every tuple in left table must appear in result
 If no matching tuple

 Padded with NULL values for attributes of right table
RIGHT OUTER JOIN
 Every tuple in right table must appear in result
 If no matching tuple

 Padded with NULL values for attributes of left table

Outer join

List all employee names and the
departments they manage if they
happen to manage a department;
if they do not manage one, we can
indicate it with a NULL value.

SELECT FNAME, LNAME, DNAME
FROM EMPLOYEE LEFT OUTER JOIN

DEPARTMENT ON SSN=MGRSSN;

37

Outer Join

+---------+------------+----------------+
| FNAME | LNAME | DNAME |

+---------+------------+----------------+
Lisa	Monroe	Administration
Rahim	Abdul	NULL
Lindsay	Fitzgerald	NULL

Louis	Duncan	NULL
Arnold	Chan	Research
Niko	Kurosawa	NULL
Claire	Prince	NULL

Scott	Cho	NULL
Mason	Cronkite	Marketing
Cindy	Rodriguez	NULL
+---------+------------+----------------+

Inner Join

SELECT FNAME, LNAME, DNAME
FROM EMPLOYEE INNER JOIN

DEPARTMENT ON SSN=MGRSSN;

+--------+----------+----------------+
| FNAME | LNAME | DNAME |
+--------+----------+----------------+
Lisa	Monroe	Administration
Arnold	Chan	Research
Mason	Cronkite	Marketing
+--------+----------+----------------+

38

39

AGGREGATE FUNCTIONS
Include COUNT, SUM, MAX, MIN, and AVG
Query 15: Find the maximum salary, the minimum
salary, and the average salary among all
employees.

Q15: SELECT MAX(SALARY),
MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE

NOTE: Some SQL implementations may not
allow more than one function in the
SELECT-clause

40

AGGREGATE FUNCTIONS
(cont.)

Query 16: Find the maximum
salary, the minimum salary, and
the average salary among
employees who work for the
'Research' department.

41

AGGREGATE FUNCTIONS
(cont.)

Queries 17: Retrieve the total
number of employees in the
company
Q17: SELECT COUNT (*)

FROM EMPLOYEE

Returns the number of rows in the
result of the query

42

AGGREGATE FUNCTIONS
(cont.)

SELECT COUNT(DISTINCT SALARY)
FROM EMPLOYEE;
SELECT COUNT(SALARY)
FROM EMPLOYEE;

43

AGGREGATE FUNCTIONS
(cont.)

(Q18) Retrieve the number of
employees in the 'Research'
department.

44

AGGREGATE FUNCTIONS
(cont.)

Q5: retrieve the names of all
employees who have two or more
dependents.

45

GROUPING
apply the aggregate functions to
subgroups of tuples in a relation
Each subgroup of tuples consists of the
set of tuples that have the same value
for the grouping attribute(s)
The function is applied to each
subgroup independently
SQL has a GROUP BY-clause for
specifying the grouping attributes,
which must also appear in the SELECT-
clause

46

GROUPING
Query 20: For each department, retrieve
the department number, the number of
employees in the department, and their
average salary.

Q20:
SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO

47

48

THE HAVING-CLAUSE

Retrieve the values of these
functions for only those groups that
satisfy certain conditions
The HAVING-clause
 Specify a selection condition on

groups (rather than on individual
tuples)

WHERE clause is executed before
Having clause.

49

THE HAVING-CLAUSE (cont.)
Query 22: For each department which has
more than two employees, retrieve the
department number, the number of
employees in the department, and their
average salary.

50

Summary of SQL Queries

A query in SQL can consist of up to six clauses,
but only the first two, SELECT and FROM, are
mandatory. The clauses are specified in the
following order:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>]

51

Specifying Updates in SQL

There are three SQL commands to
modify the database; INSERT,
DELETE, and UPDATE

52

INSERT
Example1:
INSERT INTO EMPLOYEE
VALUES ('Richard','K','Marini', '653298653',
'30-DEC-52', '98 Oak Forest,Katy,TX', 'M',

37000,'987654321', 4)

Example 2:
INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO)
VALUES ('Richard', 'Marini', '653298653‘, 4)
Must include an attribute if the attribute is specified as
NOT NULL and has no default value.
Set to other attributes: DEFAULT, or NULL

53

INSERT (cont.)

CREATE TABLE DEPTS_INFO
(DEPT_NAME VARCHAR(10),
 NO_OF_EMPS INTEGER,
 TOTAL_SAL INTEGER);

INSERT INTO DEPTS_INFO (DEPT_NAME,
NO_OF_EMPS, TOTAL_SAL)

SELECT DNAME, COUNT (*), SUM (SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO
GROUP BY DNAME ;

54

DELETE
U4A: DELETE FROM EMPLOYEE

WHERE LNAME='Brown’

U4B: DELETE FROM EMPLOYEE
WHERE SSN='123456789’

U4C: DELETE FROM EMPLOYEE
WHERE DNO IN (SELECT

DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research')

U4D: DELETE FROM EMPLOYEE

55

UPDATE
Example: Change the location and
controlling department number of project
number 10 to 'Bellaire' and 5,
respectively.

U5: UPDATE PROJECT
SET PLOCATION = 'Bellaire', DNUM =

5
WHERE PNUMBER=10

56

UPDATE (cont.)
Example: Give all employees in the
'Research' department a 10% raise
in salary.

U6: UPDATE EMPLOYEE
SET SALARY = SALARY *1.1
WHERE DNO IN (SELECT

DNUMBER
 FROM DEPARTMENT
 WHERE DNAME='Research')

57

These slides are based on the textbook
and the notes of:
R. Elmaseri and S. Navathe,
Fundamentals of Database Systems, 7th
Edition, Addison-Wesley.

	CSc 134 Database Management Systems
	SQL History
	CREATE TABLE
	Attribute Data Types and Domains in SQL
	Attribute Data Types and Domains in SQL (Cont.)
	CREATE TABLE (Cont.)
	REFERENTIAL INTEGRITY OPTIONS
	Giving Names to Constraints
	DROP TABLE
	Drop Table (Cont.)
	ALTER TABLE - Add column
	ALTER TABLE - Drop column
	Queries
	PowerPoint Presentation
	Simple SQL Queries
	Simple SQL Queries (cont.)
	Slide 17
	Qualify attribute name
	ALIASES
	ALIASES (cont.)
	UNSPECIFIED WHERE-clause
	UNSPECIFIED WHERE-clause (cont.)
	USE OF DISTINCT
	Set Operations
	UNION Operation Example
	ARITHMETIC OPERATIONS
	Substring Pattern Matching
	ORDER BY
	NESTING OF QUERIES
	Comparison operators
	THE EXISTS FUNCTION
	THE EXISTS FUNCTION (cont.)
	EXPLICIT SETS
	Renaming of Attributes
	Joined Tables
	INNER and OUTER Joins
	Outer join
	Slide 38
	AGGREGATE FUNCTIONS
	AGGREGATE FUNCTIONS (cont.)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	GROUPING
	Slide 46
	Slide 47
	THE HAVING-CLAUSE
	THE HAVING-CLAUSE (cont.)
	Summary of SQL Queries
	Specifying Updates in SQL
	INSERT
	INSERT (cont.)
	DELETE
	UPDATE
	UPDATE (cont.)
	Slide 57

