CSc 134 Database Management Systems

5. Relational Algebra

Ying Jin
Computer Science Department
California state University, Sacramento

Relational Algebra

\&A set of operations for the relational model.
\star Enable a user to specify basic retrieval requests.
*The algebra operations produce new relations.

- The result of a retrieval is a new relation.
\&A sequence of relational algebra operations
forms a relational algebra expression
- result
- a relation
- represents the result of a database query.

Topics on relational algebra

- Select

Project

- Union
- Intersection
- Minus
-Cartesian product
- Join

Natural join

The SELECT Operation

$\geqslant \sigma_{\text {<selection condition> }}(R)$
*Filter - only those tuples that satisfy a qualifying condition appear in the result.
\&Result: subset of the tuples

- Examples

The \leftarrow symbol is an assignment operator

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John		Smith	123456789	1965-01-09	731 Fandren, Houston, TX	M	30000	333445555	
	Frankin		Wong	333445555	1955-12-08	638 Voss , Houston, TX	M	40000	888665555	5
	Alicia		Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer		Walace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh		Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce		Engish	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad		Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James		Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

The SELECT Operation

(Cont.)

®Commutative

$\sigma_{<\text {cond1> }}\left(\sigma_{<\text {cond2> }}(\mathrm{R})\right)=\sigma_{\text {<cond2> }}\left(\sigma_{<\text {cond1> }}(\mathrm{R})\right)$
\&A cascaded SELECT operation may be applied in any order

```
\(\sigma_{<\text {condition } 1>}\left(\sigma_{<\text {condition } 2>}\left(\sigma_{<\text {condition } 3>}(R)\right)\right.\)
\(=\sigma<\) condition \(\gg\left(\sigma_{<\text {condition } 3>}\left(\sigma_{<\text {condition } 1>}(R)\right)\right)\)
```

*Cascade of SELECT operations into a single SELECT operation
$\sigma_{\text {<cond1> }}\left(\sigma_{\text {<cond2> }}\left(\ldots\left(\sigma_{\text {<condn> }}(R)\right) \ldots\right)=\right.$
σ <cond1> and <cond2> and \cdots and <condn> (R)

The Project Operation

*This operation selects certain columns from the table and discards the other columns.
-Creates a vertical partitioning -

- one with the needed columns (attributes) containing results of the operation
- other containing the discarded Columns.
$\rangle \pi_{\text {<listz }}(R)$
- Example

The Project Operation (Cont.)

$\geqslant \pi$ removes any duplicate tuples
$*$ The result of π is a set of tuples -a valid relation
$\pi_{\text {sex, salary }}(E M P L O Y E E)$
The number of tuples in the result of projection π <list> (R) is always less or equal to the number of tuples in R.

$$
\otimes \pi<\text { <list1> }(\pi<\text { <list2> }(R))=\pi<\text { list1> }(R)
$$

Sequence of Operations

-Relational algebra expression

- Intermediate results
e.g. TEMP $\leftarrow \sigma_{\text {wros }}$ (EMPLOYEE) RESULT $\leftarrow \pi_{\text {fname, lname, salary }}$ (TEMP)

Rename Operator: ρ

$\rho_{\mathrm{S}(\mathrm{B1}, \mathrm{B2}, \ldots, \mathrm{Bn})}(\mathrm{R})$ changes both:

- the relation name to S, and
- the column (attribute) names to B1, B1,Bn
$* \rho_{s}(R)$ changes:
- the relation name only to S
$\leqslant \rho_{(B 1, B 2, \ldots, B n)}(R)$ changes:
- the column (attribute) names only to B1, B1,Bn

Rename (cont.)

$\uparrow R<\pi_{\text {renmelwnis.sular }}$ (employee)
$\geqslant \rho_{S(F N, L N, S A L)}(R)$
$* \rho_{(F N, L N, S A L)}(R)$
$\geqslant \rho_{S}(R)$

UNION

$*_{R} \cup S$
*includes all tuples that are either in R or in S or in both R and S.

- Duplicate tuples are eliminated.
*Example: To retrieve the social security numbers of all employees who either work in department 5 or directly supervise an employee who works in department 5:

Union Example

RESULT1	SSN
	123456789
	333445555
	666884444
	453453453

RESULT2	SSN
	333445555
	888665555

RESULT	SSN
	123456789
	333445555
	666884444
	453453453
	888665555

Union Compatibility

-The operand relations $\mathrm{R}_{1}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots\right.$, $\left.A_{n}\right)$ and $R_{2}\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ must - have the same number of attributes, AND
-the domains of corresponding attributes must be compatible: $\operatorname{dom}\left(A_{i}\right)=\operatorname{dom}\left(B_{i}\right)$ for $i=1,2, \ldots$, n.

Intersection

- R n
- includes all tuples that are in both R and S
*The two operands must be Union compatible

Set Difference (MINUS)

-R-S

* The two operands must be Union compatible
- Result: a relation that includes all tuples that are in R but not in S

Commutative and associative

\diamond Union and Intersection are commutative operations
$\mathbf{R} \cup \mathbf{S}=\mathbf{S} \cup \mathbf{R}$, and $\mathbf{R} \cap \mathbf{S}=\mathbf{S} \cap \mathbf{R}$
४Union and intersection are associative operations
$R \cup(S \cup T)=(R \cup S) \cup T$, and $(R \cap S) \cap T=R \cap(S \cap T)$
*The minus operation is not commutative $\mathbf{R}-\mathbf{S} \neq \mathbf{S}-\mathbf{R}$

Cartesian Product

*R X S
-Combine tuples from two relations in a combinatorial fashion
$\rightarrow Q\left(A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{m}\right)<-$ $R\left(A_{1}, A_{2}, \ldots, A_{n}\right) \times S\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ - $m+n$ attributes

- if R has n_{R} tuples (denoted as $|R|=n_{R}$), and S has n_{S} tuples, then
Q have $n_{R} * n_{S}$ tuples.

Cartesian Product Example

Retrieve a list of names each female employee's dependents (employee's first name, last name, dependent's name

$\begin{gathered} \text { FEMALE_- } \\ \text { EMPS } \end{gathered}$	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle,Spring.TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Bery.Bellare, TX	F	43000	888685555	4
	Joyce	A	English	453453453	1972-07-31	5631 Rice,Houston, TX	F	25000	333445555	5

DEPENDENT	ESSN	DEPENDENT NAME	SEX	BDATE	RELATIONSHIP
	333445555	Alice	F	$1986-04-05$	DAUGHTER
	333445555	Theodore	M	$1883-10-25$	SON
	333445556	Joy	F	$1958-05-03$	SPOUSE
	967654321	Abner	M	$1942-02-28$	SPOUSE
	123456789	Michael	M	$1988-01-04$	SON
	123456789	Alice	F	$1988-12-30$	DAUGHTER
	123456789	Elizabeth	F	$1867-05-05$	SPOUSE

EMPNAMES	FNAME	LNAME	SSN
	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
	Joyce	Engish	453453453

EMP_DEPENDENTS	FNAME	LNAME	SSN	ESSN	DEPENDENT_NAME	SEX	BDATE	* * *
	Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	* * *
	Alicia	Zelaya	999887777	333445555	Theodore	M	1983-10-25	* * *
	Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	* * *
	Alicia	Zelaya	999887777	987654321	Abner	M	1942-02-28	* * *
	Alicia	Zelaya	999887777	123458789	Michael	M	1988-01-04	* * *
	Alicia	Zelaya	999887777	123458789	Alice	F	1988-12-30	* * *
	Alicia	Zelaya	999887777	123458789	Elizabeth	F	1967-05-05	* * *
	Jennifer	Walace	987654321	333445555	Alice	F	1986-04-05	* * *
	Jennifer	Walace	987654321	333445555	Theodore	M	1983-10-25	* * *
	Jennifer	Walace	987654321	333445555	Joy	F	1958-05-03	* * *
	Jennifer	Walace	987654321	987654321	Abner	M	1942-02-28	* * *
	Jennifer	Walace	987654321	123458789	Michael	M	1988-01-04	* * *
	Jennifer	Walace	987654321	123456789	Alice	F	1988-12-30	* * *
	Jennifer	Walace	987654321	123458789	Elizabeth	F	1967-05-05	* * *
	Joyce	English	453453453	333445555	Alice	F	1986-04-05	* * *
	Joyce	English	453453453	333445555	Theodore	M	1983-10-25	* * *
	Joyce	English	453453453	333445555	Joy	F	1958-05-03	* * *
	Joyce	English	453453453	987654321	Abner	M	1942-02-28	* * *
	Joyce	English	453453453	123456789	Michael	M	1988-01-04	* * *
	Joyce	English	453453453	123458789	Alice	F	1988-12-30	* * *
	Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	* *

ACTUAL_DEPENDENTS	FNAME	LNAME	SSN	ESSN	DEPENDENT_NAME	SEX	BDATE
	Jennifer	Walace	987654321	987654321	Abner	M	$1942-02-28$

RESULT	FNAME	LNAME	DEPENDENT_NAME
	Jennifer	Walace	Abner

JOIN

Example

EMP_DEPENDENTS \leftarrow EMPNAMES \times DEPENDENT
ACTUAL_DEPENDENTS $\leftarrow \sigma_{S S N=E S S N}\left(E M P _D E P E N T S\right)$
Replace with a single JOIN operation
ACTUAL_DEPENDENTS \leftarrow EMPNAMES $_{\text {SSN=ESSN }}$ DEPENDENT

JOIN (Cont.)

- a join operation on two relations $\mathrm{R}\left(\mathrm{A}_{1}\right.$, $\left.A_{2}, \ldots, A_{n}\right)$ and $S\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is: $\mathrm{R}_{\text {<join condition> }} \mathrm{S}$
where R and S can be any relations that result from general relational algebra expressions.
$\geqslant<$ condition> AND <condition> AND ... AND <condition>
\geqslant Each condition: Ai θ Bj
- Ai: an attribute of R
- Bj: an attribute of S
- Ai and Bj have the same domain
- $\Theta:=,<,>, \neq, \geq, \leq$

EQUIJOIN

-The join conditions with "=" only
e.g.

DEPT_MGR \leftarrow DEPARTMENT MGRSSN=SSN $E M P L O Y E E$
*The result of an EQUIJOIN:

- Always have one or more pairs of attributes that have identical values in every tuple

Natural join

*A equijoin without superfluous attributes
*Any two join attributes have the same name in both relations.

- Join attributes
*Equating all attributes pairs that have the same name in the two relations.
*Rename when necessary before applying nature join
*e.g. Dept_locs \leftarrow department * dept_locations

Join Selectivity

$R_{\text {<join condition> }} S$

- R has n_{R} tuples, S has n_{S} tuples - Result:
- min:empty relation with 0 tuples
- No combination of tuples satisfies the join condition
- max: $\mathrm{n}_{\mathrm{R}} * \mathrm{n}_{\mathrm{s}}$

Complete Set of Relational Operations

©, $\pi, \cup,-, X$
*Any other relational algebra expression can be expressed by a combination of these five operations

- Examples
$R \cap S=(R \cup S)-((R-S) \cup(S-R))$
R <join condition> $S=\sigma_{<\text {join condition> }>}(\mathrm{RXS})$

Examples of queries in relational algebra - 1

- Retrieve the name (fname,Iname) and address of all employees who work for the 'Research' department.

Examples of queries in relational algebra - 2

Retrieve the names (fname, Iname) of employees who have no dependents.

These slides are is based on the textbook:
R. Elmaseri and S. Navathe, Fundamentals of Database Systems, 7th Edition, AddisonWesley.

